Metamath Proof Explorer


Theorem pntlemi

Description: Lemma for pnt . Eliminate some assumptions from pntlemj . (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Hypotheses pntlem1.r R = a + ψ a a
pntlem1.a φ A +
pntlem1.b φ B +
pntlem1.l φ L 0 1
pntlem1.d D = A + 1
pntlem1.f F = 1 1 D L 32 B D 2
pntlem1.u φ U +
pntlem1.u2 φ U A
pntlem1.e E = U D
pntlem1.k K = e B E
pntlem1.y φ Y + 1 Y
pntlem1.x φ X + Y < X
pntlem1.c φ C +
pntlem1.w W = Y + 4 L E 2 + X K 2 4 + e 32 B U E L E 2 U 3 + C
pntlem1.z φ Z W +∞
pntlem1.m M = log X log K + 1
pntlem1.n N = log Z log K 2
pntlem1.U φ z Y +∞ R z z U
pntlem1.K φ y X +∞ z + y < z 1 + L E z < K y u z 1 + L E z R u u E
pntlem1.o O = Z K J + 1 + 1 Z K J
Assertion pntlemi φ J M ..^ N U E L E 8 log Z n O U n R Z n Z log n

Proof

Step Hyp Ref Expression
1 pntlem1.r R = a + ψ a a
2 pntlem1.a φ A +
3 pntlem1.b φ B +
4 pntlem1.l φ L 0 1
5 pntlem1.d D = A + 1
6 pntlem1.f F = 1 1 D L 32 B D 2
7 pntlem1.u φ U +
8 pntlem1.u2 φ U A
9 pntlem1.e E = U D
10 pntlem1.k K = e B E
11 pntlem1.y φ Y + 1 Y
12 pntlem1.x φ X + Y < X
13 pntlem1.c φ C +
14 pntlem1.w W = Y + 4 L E 2 + X K 2 4 + e 32 B U E L E 2 U 3 + C
15 pntlem1.z φ Z W +∞
16 pntlem1.m M = log X log K + 1
17 pntlem1.n N = log Z log K 2
18 pntlem1.U φ z Y +∞ R z z U
19 pntlem1.K φ y X +∞ z + y < z 1 + L E z < K y u z 1 + L E z R u u E
20 pntlem1.o O = Z K J + 1 + 1 Z K J
21 breq2 z = x y < z y < x
22 oveq2 z = x 1 + L E z = 1 + L E x
23 22 breq1d z = x 1 + L E z < K y 1 + L E x < K y
24 21 23 anbi12d z = x y < z 1 + L E z < K y y < x 1 + L E x < K y
25 id z = x z = x
26 25 22 oveq12d z = x z 1 + L E z = x 1 + L E x
27 26 raleqdv z = x u z 1 + L E z R u u E u x 1 + L E x R u u E
28 24 27 anbi12d z = x y < z 1 + L E z < K y u z 1 + L E z R u u E y < x 1 + L E x < K y u x 1 + L E x R u u E
29 28 cbvrexvw z + y < z 1 + L E z < K y u z 1 + L E z R u u E x + y < x 1 + L E x < K y u x 1 + L E x R u u E
30 breq1 y = K J y < x K J < x
31 oveq2 y = K J K y = K K J
32 31 breq2d y = K J 1 + L E x < K y 1 + L E x < K K J
33 30 32 anbi12d y = K J y < x 1 + L E x < K y K J < x 1 + L E x < K K J
34 33 anbi1d y = K J y < x 1 + L E x < K y u x 1 + L E x R u u E K J < x 1 + L E x < K K J u x 1 + L E x R u u E
35 34 rexbidv y = K J x + y < x 1 + L E x < K y u x 1 + L E x R u u E x + K J < x 1 + L E x < K K J u x 1 + L E x R u u E
36 29 35 syl5bb y = K J z + y < z 1 + L E z < K y u z 1 + L E z R u u E x + K J < x 1 + L E x < K K J u x 1 + L E x R u u E
37 19 adantr φ J M ..^ N y X +∞ z + y < z 1 + L E z < K y u z 1 + L E z R u u E
38 1 2 3 4 5 6 7 8 9 10 pntlemc φ E + K + E 0 1 1 < K U E +
39 38 simp2d φ K +
40 elfzoelz J M ..^ N J
41 rpexpcl K + J K J +
42 39 40 41 syl2an φ J M ..^ N K J +
43 42 rpred φ J M ..^ N K J
44 elfzofz J M ..^ N J M N
45 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 pntlemh φ J M N X < K J K J Z
46 44 45 sylan2 φ J M ..^ N X < K J K J Z
47 46 simpld φ J M ..^ N X < K J
48 12 simpld φ X +
49 48 adantr φ J M ..^ N X +
50 rpxr X + X *
51 elioopnf X * K J X +∞ K J X < K J
52 49 50 51 3syl φ J M ..^ N K J X +∞ K J X < K J
53 43 47 52 mpbir2and φ J M ..^ N K J X +∞
54 36 37 53 rspcdva φ J M ..^ N x + K J < x 1 + L E x < K K J u x 1 + L E x R u u E
55 2 ad2antrr φ J M ..^ N x + K J < x 1 + L E x < K K J u x 1 + L E x R u u E A +
56 3 ad2antrr φ J M ..^ N x + K J < x 1 + L E x < K K J u x 1 + L E x R u u E B +
57 4 ad2antrr φ J M ..^ N x + K J < x 1 + L E x < K K J u x 1 + L E x R u u E L 0 1
58 7 ad2antrr φ J M ..^ N x + K J < x 1 + L E x < K K J u x 1 + L E x R u u E U +
59 8 ad2antrr φ J M ..^ N x + K J < x 1 + L E x < K K J u x 1 + L E x R u u E U A
60 11 ad2antrr φ J M ..^ N x + K J < x 1 + L E x < K K J u x 1 + L E x R u u E Y + 1 Y
61 12 ad2antrr φ J M ..^ N x + K J < x 1 + L E x < K K J u x 1 + L E x R u u E X + Y < X
62 13 ad2antrr φ J M ..^ N x + K J < x 1 + L E x < K K J u x 1 + L E x R u u E C +
63 15 ad2antrr φ J M ..^ N x + K J < x 1 + L E x < K K J u x 1 + L E x R u u E Z W +∞
64 18 ad2antrr φ J M ..^ N x + K J < x 1 + L E x < K K J u x 1 + L E x R u u E z Y +∞ R z z U
65 19 ad2antrr φ J M ..^ N x + K J < x 1 + L E x < K K J u x 1 + L E x R u u E y X +∞ z + y < z 1 + L E z < K y u z 1 + L E z R u u E
66 simprl φ J M ..^ N x + K J < x 1 + L E x < K K J u x 1 + L E x R u u E x +
67 simprr φ J M ..^ N x + K J < x 1 + L E x < K K J u x 1 + L E x R u u E K J < x 1 + L E x < K K J u x 1 + L E x R u u E
68 simplr φ J M ..^ N x + K J < x 1 + L E x < K K J u x 1 + L E x R u u E J M ..^ N
69 eqid Z 1 + L E x + 1 Z x = Z 1 + L E x + 1 Z x
70 1 55 56 57 5 6 58 59 9 10 60 61 62 14 63 16 17 64 65 20 66 67 68 69 pntlemj φ J M ..^ N x + K J < x 1 + L E x < K K J u x 1 + L E x R u u E U E L E 8 log Z n O U n R Z n Z log n
71 54 70 rexlimddv φ J M ..^ N U E L E 8 log Z n O U n R Z n Z log n