| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ppiublem1.1 |
|- ( N <_ 6 /\ ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) e. ( N ... 5 ) -> ( P mod 6 ) e. { 1 , 5 } ) ) ) |
| 2 |
|
ppiublem1.2 |
|- M e. NN0 |
| 3 |
|
ppiublem1.3 |
|- N = ( M + 1 ) |
| 4 |
|
ppiublem1.4 |
|- ( 2 || M \/ 3 || M \/ M e. { 1 , 5 } ) |
| 5 |
1
|
simpli |
|- N <_ 6 |
| 6 |
|
df-6 |
|- 6 = ( 5 + 1 ) |
| 7 |
5 3 6
|
3brtr3i |
|- ( M + 1 ) <_ ( 5 + 1 ) |
| 8 |
2
|
nn0rei |
|- M e. RR |
| 9 |
|
5re |
|- 5 e. RR |
| 10 |
|
1re |
|- 1 e. RR |
| 11 |
8 9 10
|
leadd1i |
|- ( M <_ 5 <-> ( M + 1 ) <_ ( 5 + 1 ) ) |
| 12 |
7 11
|
mpbir |
|- M <_ 5 |
| 13 |
|
6re |
|- 6 e. RR |
| 14 |
|
5lt6 |
|- 5 < 6 |
| 15 |
9 13 14
|
ltleii |
|- 5 <_ 6 |
| 16 |
8 9 13
|
letri |
|- ( ( M <_ 5 /\ 5 <_ 6 ) -> M <_ 6 ) |
| 17 |
12 15 16
|
mp2an |
|- M <_ 6 |
| 18 |
2
|
nn0zi |
|- M e. ZZ |
| 19 |
|
5nn |
|- 5 e. NN |
| 20 |
19
|
nnzi |
|- 5 e. ZZ |
| 21 |
|
eluz2 |
|- ( 5 e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ 5 e. ZZ /\ M <_ 5 ) ) |
| 22 |
18 20 12 21
|
mpbir3an |
|- 5 e. ( ZZ>= ` M ) |
| 23 |
|
elfzp12 |
|- ( 5 e. ( ZZ>= ` M ) -> ( ( P mod 6 ) e. ( M ... 5 ) <-> ( ( P mod 6 ) = M \/ ( P mod 6 ) e. ( ( M + 1 ) ... 5 ) ) ) ) |
| 24 |
22 23
|
ax-mp |
|- ( ( P mod 6 ) e. ( M ... 5 ) <-> ( ( P mod 6 ) = M \/ ( P mod 6 ) e. ( ( M + 1 ) ... 5 ) ) ) |
| 25 |
|
2nn |
|- 2 e. NN |
| 26 |
|
6nn |
|- 6 e. NN |
| 27 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
| 28 |
27
|
adantr |
|- ( ( P e. Prime /\ 4 <_ P ) -> P e. ZZ ) |
| 29 |
|
3z |
|- 3 e. ZZ |
| 30 |
|
2z |
|- 2 e. ZZ |
| 31 |
|
dvdsmul2 |
|- ( ( 3 e. ZZ /\ 2 e. ZZ ) -> 2 || ( 3 x. 2 ) ) |
| 32 |
29 30 31
|
mp2an |
|- 2 || ( 3 x. 2 ) |
| 33 |
|
3t2e6 |
|- ( 3 x. 2 ) = 6 |
| 34 |
32 33
|
breqtri |
|- 2 || 6 |
| 35 |
|
dvdsmod |
|- ( ( ( 2 e. NN /\ 6 e. NN /\ P e. ZZ ) /\ 2 || 6 ) -> ( 2 || ( P mod 6 ) <-> 2 || P ) ) |
| 36 |
34 35
|
mpan2 |
|- ( ( 2 e. NN /\ 6 e. NN /\ P e. ZZ ) -> ( 2 || ( P mod 6 ) <-> 2 || P ) ) |
| 37 |
25 26 28 36
|
mp3an12i |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( 2 || ( P mod 6 ) <-> 2 || P ) ) |
| 38 |
|
uzid |
|- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
| 39 |
30 38
|
ax-mp |
|- 2 e. ( ZZ>= ` 2 ) |
| 40 |
|
simpl |
|- ( ( P e. Prime /\ 4 <_ P ) -> P e. Prime ) |
| 41 |
|
dvdsprm |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ P e. Prime ) -> ( 2 || P <-> 2 = P ) ) |
| 42 |
39 40 41
|
sylancr |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( 2 || P <-> 2 = P ) ) |
| 43 |
37 42
|
bitrd |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( 2 || ( P mod 6 ) <-> 2 = P ) ) |
| 44 |
|
simpr |
|- ( ( P e. Prime /\ 4 <_ P ) -> 4 <_ P ) |
| 45 |
|
breq2 |
|- ( 2 = P -> ( 4 <_ 2 <-> 4 <_ P ) ) |
| 46 |
44 45
|
syl5ibrcom |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( 2 = P -> 4 <_ 2 ) ) |
| 47 |
|
2lt4 |
|- 2 < 4 |
| 48 |
|
2re |
|- 2 e. RR |
| 49 |
|
4re |
|- 4 e. RR |
| 50 |
48 49
|
ltnlei |
|- ( 2 < 4 <-> -. 4 <_ 2 ) |
| 51 |
47 50
|
mpbi |
|- -. 4 <_ 2 |
| 52 |
51
|
pm2.21i |
|- ( 4 <_ 2 -> ( P mod 6 ) e. { 1 , 5 } ) |
| 53 |
46 52
|
syl6 |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( 2 = P -> ( P mod 6 ) e. { 1 , 5 } ) ) |
| 54 |
43 53
|
sylbid |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( 2 || ( P mod 6 ) -> ( P mod 6 ) e. { 1 , 5 } ) ) |
| 55 |
|
breq2 |
|- ( ( P mod 6 ) = M -> ( 2 || ( P mod 6 ) <-> 2 || M ) ) |
| 56 |
55
|
imbi1d |
|- ( ( P mod 6 ) = M -> ( ( 2 || ( P mod 6 ) -> ( P mod 6 ) e. { 1 , 5 } ) <-> ( 2 || M -> ( P mod 6 ) e. { 1 , 5 } ) ) ) |
| 57 |
54 56
|
syl5ibcom |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) = M -> ( 2 || M -> ( P mod 6 ) e. { 1 , 5 } ) ) ) |
| 58 |
57
|
com3r |
|- ( 2 || M -> ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) = M -> ( P mod 6 ) e. { 1 , 5 } ) ) ) |
| 59 |
|
3nn |
|- 3 e. NN |
| 60 |
|
dvdsmul1 |
|- ( ( 3 e. ZZ /\ 2 e. ZZ ) -> 3 || ( 3 x. 2 ) ) |
| 61 |
29 30 60
|
mp2an |
|- 3 || ( 3 x. 2 ) |
| 62 |
61 33
|
breqtri |
|- 3 || 6 |
| 63 |
|
dvdsmod |
|- ( ( ( 3 e. NN /\ 6 e. NN /\ P e. ZZ ) /\ 3 || 6 ) -> ( 3 || ( P mod 6 ) <-> 3 || P ) ) |
| 64 |
62 63
|
mpan2 |
|- ( ( 3 e. NN /\ 6 e. NN /\ P e. ZZ ) -> ( 3 || ( P mod 6 ) <-> 3 || P ) ) |
| 65 |
59 26 28 64
|
mp3an12i |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( 3 || ( P mod 6 ) <-> 3 || P ) ) |
| 66 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
| 67 |
|
peano2uz |
|- ( 2 e. ( ZZ>= ` 2 ) -> ( 2 + 1 ) e. ( ZZ>= ` 2 ) ) |
| 68 |
39 67
|
ax-mp |
|- ( 2 + 1 ) e. ( ZZ>= ` 2 ) |
| 69 |
66 68
|
eqeltri |
|- 3 e. ( ZZ>= ` 2 ) |
| 70 |
|
dvdsprm |
|- ( ( 3 e. ( ZZ>= ` 2 ) /\ P e. Prime ) -> ( 3 || P <-> 3 = P ) ) |
| 71 |
69 40 70
|
sylancr |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( 3 || P <-> 3 = P ) ) |
| 72 |
65 71
|
bitrd |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( 3 || ( P mod 6 ) <-> 3 = P ) ) |
| 73 |
|
breq2 |
|- ( 3 = P -> ( 4 <_ 3 <-> 4 <_ P ) ) |
| 74 |
44 73
|
syl5ibrcom |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( 3 = P -> 4 <_ 3 ) ) |
| 75 |
|
3lt4 |
|- 3 < 4 |
| 76 |
|
3re |
|- 3 e. RR |
| 77 |
76 49
|
ltnlei |
|- ( 3 < 4 <-> -. 4 <_ 3 ) |
| 78 |
75 77
|
mpbi |
|- -. 4 <_ 3 |
| 79 |
78
|
pm2.21i |
|- ( 4 <_ 3 -> ( P mod 6 ) e. { 1 , 5 } ) |
| 80 |
74 79
|
syl6 |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( 3 = P -> ( P mod 6 ) e. { 1 , 5 } ) ) |
| 81 |
72 80
|
sylbid |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( 3 || ( P mod 6 ) -> ( P mod 6 ) e. { 1 , 5 } ) ) |
| 82 |
|
breq2 |
|- ( ( P mod 6 ) = M -> ( 3 || ( P mod 6 ) <-> 3 || M ) ) |
| 83 |
82
|
imbi1d |
|- ( ( P mod 6 ) = M -> ( ( 3 || ( P mod 6 ) -> ( P mod 6 ) e. { 1 , 5 } ) <-> ( 3 || M -> ( P mod 6 ) e. { 1 , 5 } ) ) ) |
| 84 |
81 83
|
syl5ibcom |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) = M -> ( 3 || M -> ( P mod 6 ) e. { 1 , 5 } ) ) ) |
| 85 |
84
|
com3r |
|- ( 3 || M -> ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) = M -> ( P mod 6 ) e. { 1 , 5 } ) ) ) |
| 86 |
|
eleq1a |
|- ( M e. { 1 , 5 } -> ( ( P mod 6 ) = M -> ( P mod 6 ) e. { 1 , 5 } ) ) |
| 87 |
86
|
a1d |
|- ( M e. { 1 , 5 } -> ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) = M -> ( P mod 6 ) e. { 1 , 5 } ) ) ) |
| 88 |
58 85 87
|
3jaoi |
|- ( ( 2 || M \/ 3 || M \/ M e. { 1 , 5 } ) -> ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) = M -> ( P mod 6 ) e. { 1 , 5 } ) ) ) |
| 89 |
4 88
|
ax-mp |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) = M -> ( P mod 6 ) e. { 1 , 5 } ) ) |
| 90 |
3
|
oveq1i |
|- ( N ... 5 ) = ( ( M + 1 ) ... 5 ) |
| 91 |
90
|
eleq2i |
|- ( ( P mod 6 ) e. ( N ... 5 ) <-> ( P mod 6 ) e. ( ( M + 1 ) ... 5 ) ) |
| 92 |
1
|
simpri |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) e. ( N ... 5 ) -> ( P mod 6 ) e. { 1 , 5 } ) ) |
| 93 |
91 92
|
biimtrrid |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) e. ( ( M + 1 ) ... 5 ) -> ( P mod 6 ) e. { 1 , 5 } ) ) |
| 94 |
89 93
|
jaod |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( ( ( P mod 6 ) = M \/ ( P mod 6 ) e. ( ( M + 1 ) ... 5 ) ) -> ( P mod 6 ) e. { 1 , 5 } ) ) |
| 95 |
24 94
|
biimtrid |
|- ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) e. ( M ... 5 ) -> ( P mod 6 ) e. { 1 , 5 } ) ) |
| 96 |
17 95
|
pm3.2i |
|- ( M <_ 6 /\ ( ( P e. Prime /\ 4 <_ P ) -> ( ( P mod 6 ) e. ( M ... 5 ) -> ( P mod 6 ) e. { 1 , 5 } ) ) ) |