| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psrascl.s |
|- S = ( I mPwSer R ) |
| 2 |
|
psrascl.d |
|- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
| 3 |
|
psrascl.z |
|- .0. = ( 0g ` R ) |
| 4 |
|
psrascl.k |
|- K = ( Base ` R ) |
| 5 |
|
psrascl.a |
|- A = ( algSc ` S ) |
| 6 |
|
psrascl.i |
|- ( ph -> I e. V ) |
| 7 |
|
psrascl.r |
|- ( ph -> R e. Ring ) |
| 8 |
|
psrascl.x |
|- ( ph -> X e. K ) |
| 9 |
1 6 7
|
psrsca |
|- ( ph -> R = ( Scalar ` S ) ) |
| 10 |
9
|
fveq2d |
|- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` S ) ) ) |
| 11 |
4 10
|
eqtrid |
|- ( ph -> K = ( Base ` ( Scalar ` S ) ) ) |
| 12 |
8 11
|
eleqtrd |
|- ( ph -> X e. ( Base ` ( Scalar ` S ) ) ) |
| 13 |
|
eqid |
|- ( Scalar ` S ) = ( Scalar ` S ) |
| 14 |
|
eqid |
|- ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` S ) ) |
| 15 |
|
eqid |
|- ( .s ` S ) = ( .s ` S ) |
| 16 |
|
eqid |
|- ( 1r ` S ) = ( 1r ` S ) |
| 17 |
5 13 14 15 16
|
asclval |
|- ( X e. ( Base ` ( Scalar ` S ) ) -> ( A ` X ) = ( X ( .s ` S ) ( 1r ` S ) ) ) |
| 18 |
12 17
|
syl |
|- ( ph -> ( A ` X ) = ( X ( .s ` S ) ( 1r ` S ) ) ) |
| 19 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 20 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 21 |
1 6 7
|
psrring |
|- ( ph -> S e. Ring ) |
| 22 |
19 16
|
ringidcl |
|- ( S e. Ring -> ( 1r ` S ) e. ( Base ` S ) ) |
| 23 |
21 22
|
syl |
|- ( ph -> ( 1r ` S ) e. ( Base ` S ) ) |
| 24 |
1 15 4 19 20 2 8 23
|
psrvsca |
|- ( ph -> ( X ( .s ` S ) ( 1r ` S ) ) = ( ( D X. { X } ) oF ( .r ` R ) ( 1r ` S ) ) ) |
| 25 |
|
fnconstg |
|- ( X e. K -> ( D X. { X } ) Fn D ) |
| 26 |
8 25
|
syl |
|- ( ph -> ( D X. { X } ) Fn D ) |
| 27 |
1 4 2 19 23
|
psrelbas |
|- ( ph -> ( 1r ` S ) : D --> K ) |
| 28 |
27
|
ffnd |
|- ( ph -> ( 1r ` S ) Fn D ) |
| 29 |
|
ovexd |
|- ( ph -> ( NN0 ^m I ) e. _V ) |
| 30 |
2 29
|
rabexd |
|- ( ph -> D e. _V ) |
| 31 |
|
inidm |
|- ( D i^i D ) = D |
| 32 |
|
fvconst2g |
|- ( ( X e. K /\ y e. D ) -> ( ( D X. { X } ) ` y ) = X ) |
| 33 |
8 32
|
sylan |
|- ( ( ph /\ y e. D ) -> ( ( D X. { X } ) ` y ) = X ) |
| 34 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 35 |
1 6 7 2 3 34 16
|
psr1 |
|- ( ph -> ( 1r ` S ) = ( d e. D |-> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) ) |
| 36 |
35
|
adantr |
|- ( ( ph /\ y e. D ) -> ( 1r ` S ) = ( d e. D |-> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) ) |
| 37 |
36
|
fveq1d |
|- ( ( ph /\ y e. D ) -> ( ( 1r ` S ) ` y ) = ( ( d e. D |-> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) ` y ) ) |
| 38 |
|
eqeq1 |
|- ( d = y -> ( d = ( I X. { 0 } ) <-> y = ( I X. { 0 } ) ) ) |
| 39 |
38
|
ifbid |
|- ( d = y -> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) = if ( y = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) |
| 40 |
|
eqid |
|- ( d e. D |-> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) = ( d e. D |-> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) |
| 41 |
|
fvex |
|- ( 1r ` R ) e. _V |
| 42 |
3
|
fvexi |
|- .0. e. _V |
| 43 |
41 42
|
ifex |
|- if ( y = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) e. _V |
| 44 |
39 40 43
|
fvmpt |
|- ( y e. D -> ( ( d e. D |-> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) ` y ) = if ( y = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) |
| 45 |
44
|
adantl |
|- ( ( ph /\ y e. D ) -> ( ( d e. D |-> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) ` y ) = if ( y = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) |
| 46 |
37 45
|
eqtrd |
|- ( ( ph /\ y e. D ) -> ( ( 1r ` S ) ` y ) = if ( y = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) |
| 47 |
26 28 30 30 31 33 46
|
offval |
|- ( ph -> ( ( D X. { X } ) oF ( .r ` R ) ( 1r ` S ) ) = ( y e. D |-> ( X ( .r ` R ) if ( y = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) ) ) |
| 48 |
|
ovif2 |
|- ( X ( .r ` R ) if ( y = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) = if ( y = ( I X. { 0 } ) , ( X ( .r ` R ) ( 1r ` R ) ) , ( X ( .r ` R ) .0. ) ) |
| 49 |
4 20 34 7 8
|
ringridmd |
|- ( ph -> ( X ( .r ` R ) ( 1r ` R ) ) = X ) |
| 50 |
4 20 3 7 8
|
ringrzd |
|- ( ph -> ( X ( .r ` R ) .0. ) = .0. ) |
| 51 |
49 50
|
ifeq12d |
|- ( ph -> if ( y = ( I X. { 0 } ) , ( X ( .r ` R ) ( 1r ` R ) ) , ( X ( .r ` R ) .0. ) ) = if ( y = ( I X. { 0 } ) , X , .0. ) ) |
| 52 |
48 51
|
eqtrid |
|- ( ph -> ( X ( .r ` R ) if ( y = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) = if ( y = ( I X. { 0 } ) , X , .0. ) ) |
| 53 |
52
|
mpteq2dv |
|- ( ph -> ( y e. D |-> ( X ( .r ` R ) if ( y = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) ) = ( y e. D |-> if ( y = ( I X. { 0 } ) , X , .0. ) ) ) |
| 54 |
47 53
|
eqtrd |
|- ( ph -> ( ( D X. { X } ) oF ( .r ` R ) ( 1r ` S ) ) = ( y e. D |-> if ( y = ( I X. { 0 } ) , X , .0. ) ) ) |
| 55 |
18 24 54
|
3eqtrd |
|- ( ph -> ( A ` X ) = ( y e. D |-> if ( y = ( I X. { 0 } ) , X , .0. ) ) ) |