| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> ( R1 ` A ) e. WUni ) |
| 2 |
1
|
wun0 |
|- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> (/) e. ( R1 ` A ) ) |
| 3 |
|
elfvdm |
|- ( (/) e. ( R1 ` A ) -> A e. dom R1 ) |
| 4 |
2 3
|
syl |
|- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> A e. dom R1 ) |
| 5 |
|
r1fnon |
|- R1 Fn On |
| 6 |
5
|
fndmi |
|- dom R1 = On |
| 7 |
4 6
|
eleqtrdi |
|- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> A e. On ) |
| 8 |
|
eloni |
|- ( A e. On -> Ord A ) |
| 9 |
7 8
|
syl |
|- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> Ord A ) |
| 10 |
|
n0i |
|- ( (/) e. ( R1 ` A ) -> -. ( R1 ` A ) = (/) ) |
| 11 |
2 10
|
syl |
|- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> -. ( R1 ` A ) = (/) ) |
| 12 |
|
fveq2 |
|- ( A = (/) -> ( R1 ` A ) = ( R1 ` (/) ) ) |
| 13 |
|
r10 |
|- ( R1 ` (/) ) = (/) |
| 14 |
12 13
|
eqtrdi |
|- ( A = (/) -> ( R1 ` A ) = (/) ) |
| 15 |
11 14
|
nsyl |
|- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> -. A = (/) ) |
| 16 |
|
onsuc |
|- ( A e. On -> suc A e. On ) |
| 17 |
7 16
|
syl |
|- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> suc A e. On ) |
| 18 |
|
sucidg |
|- ( A e. On -> A e. suc A ) |
| 19 |
7 18
|
syl |
|- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> A e. suc A ) |
| 20 |
|
r1ord |
|- ( suc A e. On -> ( A e. suc A -> ( R1 ` A ) e. ( R1 ` suc A ) ) ) |
| 21 |
17 19 20
|
sylc |
|- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> ( R1 ` A ) e. ( R1 ` suc A ) ) |
| 22 |
|
r1elwf |
|- ( ( R1 ` A ) e. ( R1 ` suc A ) -> ( R1 ` A ) e. U. ( R1 " On ) ) |
| 23 |
|
wfelirr |
|- ( ( R1 ` A ) e. U. ( R1 " On ) -> -. ( R1 ` A ) e. ( R1 ` A ) ) |
| 24 |
21 22 23
|
3syl |
|- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> -. ( R1 ` A ) e. ( R1 ` A ) ) |
| 25 |
|
simprr |
|- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> A = suc x ) |
| 26 |
25
|
fveq2d |
|- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> ( R1 ` A ) = ( R1 ` suc x ) ) |
| 27 |
|
r1suc |
|- ( x e. On -> ( R1 ` suc x ) = ~P ( R1 ` x ) ) |
| 28 |
27
|
ad2antrl |
|- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> ( R1 ` suc x ) = ~P ( R1 ` x ) ) |
| 29 |
26 28
|
eqtrd |
|- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> ( R1 ` A ) = ~P ( R1 ` x ) ) |
| 30 |
|
simplr |
|- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> ( R1 ` A ) e. WUni ) |
| 31 |
7
|
adantr |
|- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> A e. On ) |
| 32 |
|
sucidg |
|- ( x e. On -> x e. suc x ) |
| 33 |
32
|
ad2antrl |
|- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> x e. suc x ) |
| 34 |
33 25
|
eleqtrrd |
|- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> x e. A ) |
| 35 |
|
r1ord |
|- ( A e. On -> ( x e. A -> ( R1 ` x ) e. ( R1 ` A ) ) ) |
| 36 |
31 34 35
|
sylc |
|- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> ( R1 ` x ) e. ( R1 ` A ) ) |
| 37 |
30 36
|
wunpw |
|- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> ~P ( R1 ` x ) e. ( R1 ` A ) ) |
| 38 |
29 37
|
eqeltrd |
|- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> ( R1 ` A ) e. ( R1 ` A ) ) |
| 39 |
38
|
rexlimdvaa |
|- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> ( E. x e. On A = suc x -> ( R1 ` A ) e. ( R1 ` A ) ) ) |
| 40 |
24 39
|
mtod |
|- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> -. E. x e. On A = suc x ) |
| 41 |
|
ioran |
|- ( -. ( A = (/) \/ E. x e. On A = suc x ) <-> ( -. A = (/) /\ -. E. x e. On A = suc x ) ) |
| 42 |
15 40 41
|
sylanbrc |
|- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> -. ( A = (/) \/ E. x e. On A = suc x ) ) |
| 43 |
|
dflim3 |
|- ( Lim A <-> ( Ord A /\ -. ( A = (/) \/ E. x e. On A = suc x ) ) ) |
| 44 |
9 42 43
|
sylanbrc |
|- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> Lim A ) |
| 45 |
|
r1limwun |
|- ( ( A e. V /\ Lim A ) -> ( R1 ` A ) e. WUni ) |
| 46 |
44 45
|
impbida |
|- ( A e. V -> ( ( R1 ` A ) e. WUni <-> Lim A ) ) |