| Step |
Hyp |
Ref |
Expression |
| 1 |
|
on1el3.1 |
|- G = ( 1st ` R ) |
| 2 |
|
on1el3.2 |
|- X = ran G |
| 3 |
1
|
rngogrpo |
|- ( R e. RingOps -> G e. GrpOp ) |
| 4 |
2
|
grpofo |
|- ( G e. GrpOp -> G : ( X X. X ) -onto-> X ) |
| 5 |
|
fof |
|- ( G : ( X X. X ) -onto-> X -> G : ( X X. X ) --> X ) |
| 6 |
3 4 5
|
3syl |
|- ( R e. RingOps -> G : ( X X. X ) --> X ) |
| 7 |
6
|
adantr |
|- ( ( R e. RingOps /\ A e. B ) -> G : ( X X. X ) --> X ) |
| 8 |
|
id |
|- ( X = { A } -> X = { A } ) |
| 9 |
8
|
sqxpeqd |
|- ( X = { A } -> ( X X. X ) = ( { A } X. { A } ) ) |
| 10 |
9 8
|
feq23d |
|- ( X = { A } -> ( G : ( X X. X ) --> X <-> G : ( { A } X. { A } ) --> { A } ) ) |
| 11 |
7 10
|
syl5ibcom |
|- ( ( R e. RingOps /\ A e. B ) -> ( X = { A } -> G : ( { A } X. { A } ) --> { A } ) ) |
| 12 |
7
|
fdmd |
|- ( ( R e. RingOps /\ A e. B ) -> dom G = ( X X. X ) ) |
| 13 |
12
|
eqcomd |
|- ( ( R e. RingOps /\ A e. B ) -> ( X X. X ) = dom G ) |
| 14 |
|
fdm |
|- ( G : ( { A } X. { A } ) --> { A } -> dom G = ( { A } X. { A } ) ) |
| 15 |
14
|
eqeq2d |
|- ( G : ( { A } X. { A } ) --> { A } -> ( ( X X. X ) = dom G <-> ( X X. X ) = ( { A } X. { A } ) ) ) |
| 16 |
13 15
|
syl5ibcom |
|- ( ( R e. RingOps /\ A e. B ) -> ( G : ( { A } X. { A } ) --> { A } -> ( X X. X ) = ( { A } X. { A } ) ) ) |
| 17 |
|
xpid11 |
|- ( ( X X. X ) = ( { A } X. { A } ) <-> X = { A } ) |
| 18 |
16 17
|
imbitrdi |
|- ( ( R e. RingOps /\ A e. B ) -> ( G : ( { A } X. { A } ) --> { A } -> X = { A } ) ) |
| 19 |
11 18
|
impbid |
|- ( ( R e. RingOps /\ A e. B ) -> ( X = { A } <-> G : ( { A } X. { A } ) --> { A } ) ) |
| 20 |
|
simpr |
|- ( ( R e. RingOps /\ A e. B ) -> A e. B ) |
| 21 |
|
xpsng |
|- ( ( A e. B /\ A e. B ) -> ( { A } X. { A } ) = { <. A , A >. } ) |
| 22 |
20 21
|
sylancom |
|- ( ( R e. RingOps /\ A e. B ) -> ( { A } X. { A } ) = { <. A , A >. } ) |
| 23 |
22
|
feq2d |
|- ( ( R e. RingOps /\ A e. B ) -> ( G : ( { A } X. { A } ) --> { A } <-> G : { <. A , A >. } --> { A } ) ) |
| 24 |
|
opex |
|- <. A , A >. e. _V |
| 25 |
|
fsng |
|- ( ( <. A , A >. e. _V /\ A e. B ) -> ( G : { <. A , A >. } --> { A } <-> G = { <. <. A , A >. , A >. } ) ) |
| 26 |
24 20 25
|
sylancr |
|- ( ( R e. RingOps /\ A e. B ) -> ( G : { <. A , A >. } --> { A } <-> G = { <. <. A , A >. , A >. } ) ) |
| 27 |
19 23 26
|
3bitrd |
|- ( ( R e. RingOps /\ A e. B ) -> ( X = { A } <-> G = { <. <. A , A >. , A >. } ) ) |
| 28 |
1
|
eqeq1i |
|- ( G = { <. <. A , A >. , A >. } <-> ( 1st ` R ) = { <. <. A , A >. , A >. } ) |
| 29 |
27 28
|
bitrdi |
|- ( ( R e. RingOps /\ A e. B ) -> ( X = { A } <-> ( 1st ` R ) = { <. <. A , A >. , A >. } ) ) |
| 30 |
29
|
anbi1d |
|- ( ( R e. RingOps /\ A e. B ) -> ( ( X = { A } /\ ( 2nd ` R ) = { <. <. A , A >. , A >. } ) <-> ( ( 1st ` R ) = { <. <. A , A >. , A >. } /\ ( 2nd ` R ) = { <. <. A , A >. , A >. } ) ) ) |
| 31 |
|
eqid |
|- ( 2nd ` R ) = ( 2nd ` R ) |
| 32 |
1 31 2
|
rngosm |
|- ( R e. RingOps -> ( 2nd ` R ) : ( X X. X ) --> X ) |
| 33 |
32
|
adantr |
|- ( ( R e. RingOps /\ A e. B ) -> ( 2nd ` R ) : ( X X. X ) --> X ) |
| 34 |
9 8
|
feq23d |
|- ( X = { A } -> ( ( 2nd ` R ) : ( X X. X ) --> X <-> ( 2nd ` R ) : ( { A } X. { A } ) --> { A } ) ) |
| 35 |
33 34
|
syl5ibcom |
|- ( ( R e. RingOps /\ A e. B ) -> ( X = { A } -> ( 2nd ` R ) : ( { A } X. { A } ) --> { A } ) ) |
| 36 |
22
|
feq2d |
|- ( ( R e. RingOps /\ A e. B ) -> ( ( 2nd ` R ) : ( { A } X. { A } ) --> { A } <-> ( 2nd ` R ) : { <. A , A >. } --> { A } ) ) |
| 37 |
|
fsng |
|- ( ( <. A , A >. e. _V /\ A e. B ) -> ( ( 2nd ` R ) : { <. A , A >. } --> { A } <-> ( 2nd ` R ) = { <. <. A , A >. , A >. } ) ) |
| 38 |
24 20 37
|
sylancr |
|- ( ( R e. RingOps /\ A e. B ) -> ( ( 2nd ` R ) : { <. A , A >. } --> { A } <-> ( 2nd ` R ) = { <. <. A , A >. , A >. } ) ) |
| 39 |
36 38
|
bitrd |
|- ( ( R e. RingOps /\ A e. B ) -> ( ( 2nd ` R ) : ( { A } X. { A } ) --> { A } <-> ( 2nd ` R ) = { <. <. A , A >. , A >. } ) ) |
| 40 |
35 39
|
sylibd |
|- ( ( R e. RingOps /\ A e. B ) -> ( X = { A } -> ( 2nd ` R ) = { <. <. A , A >. , A >. } ) ) |
| 41 |
40
|
pm4.71d |
|- ( ( R e. RingOps /\ A e. B ) -> ( X = { A } <-> ( X = { A } /\ ( 2nd ` R ) = { <. <. A , A >. , A >. } ) ) ) |
| 42 |
|
relrngo |
|- Rel RingOps |
| 43 |
|
df-rel |
|- ( Rel RingOps <-> RingOps C_ ( _V X. _V ) ) |
| 44 |
42 43
|
mpbi |
|- RingOps C_ ( _V X. _V ) |
| 45 |
44
|
sseli |
|- ( R e. RingOps -> R e. ( _V X. _V ) ) |
| 46 |
45
|
adantr |
|- ( ( R e. RingOps /\ A e. B ) -> R e. ( _V X. _V ) ) |
| 47 |
|
eqop |
|- ( R e. ( _V X. _V ) -> ( R = <. { <. <. A , A >. , A >. } , { <. <. A , A >. , A >. } >. <-> ( ( 1st ` R ) = { <. <. A , A >. , A >. } /\ ( 2nd ` R ) = { <. <. A , A >. , A >. } ) ) ) |
| 48 |
46 47
|
syl |
|- ( ( R e. RingOps /\ A e. B ) -> ( R = <. { <. <. A , A >. , A >. } , { <. <. A , A >. , A >. } >. <-> ( ( 1st ` R ) = { <. <. A , A >. , A >. } /\ ( 2nd ` R ) = { <. <. A , A >. , A >. } ) ) ) |
| 49 |
30 41 48
|
3bitr4d |
|- ( ( R e. RingOps /\ A e. B ) -> ( X = { A } <-> R = <. { <. <. A , A >. , A >. } , { <. <. A , A >. , A >. } >. ) ) |