Metamath Proof Explorer


Theorem rtrclex

Description: The reflexive-transitive closure of a set exists. (Contributed by RP, 1-Nov-2020)

Ref Expression
Assertion rtrclex
|- ( A e. _V <-> |^| { x | ( A C_ x /\ ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) ) } e. _V )

Proof

Step Hyp Ref Expression
1 ssun1
 |-  A C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) )
2 coundir
 |-  ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) = ( ( A o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) u. ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) )
3 coundi
 |-  ( A o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) = ( ( A o. A ) u. ( A o. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) )
4 cossxp
 |-  ( A o. A ) C_ ( dom A X. ran A )
5 ssun1
 |-  dom A C_ ( dom A u. ran A )
6 ssun2
 |-  ran A C_ ( dom A u. ran A )
7 xpss12
 |-  ( ( dom A C_ ( dom A u. ran A ) /\ ran A C_ ( dom A u. ran A ) ) -> ( dom A X. ran A ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) )
8 5 6 7 mp2an
 |-  ( dom A X. ran A ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) )
9 4 8 sstri
 |-  ( A o. A ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) )
10 cossxp
 |-  ( A o. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) C_ ( dom ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) X. ran A )
11 dmxpss
 |-  dom ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) C_ ( dom A u. ran A )
12 xpss12
 |-  ( ( dom ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) C_ ( dom A u. ran A ) /\ ran A C_ ( dom A u. ran A ) ) -> ( dom ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) X. ran A ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) )
13 11 6 12 mp2an
 |-  ( dom ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) X. ran A ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) )
14 10 13 sstri
 |-  ( A o. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) )
15 9 14 unssi
 |-  ( ( A o. A ) u. ( A o. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) )
16 3 15 eqsstri
 |-  ( A o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) )
17 coundi
 |-  ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) = ( ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. A ) u. ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) )
18 cossxp
 |-  ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. A ) C_ ( dom A X. ran ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) )
19 rnxpss
 |-  ran ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) C_ ( dom A u. ran A )
20 xpss12
 |-  ( ( dom A C_ ( dom A u. ran A ) /\ ran ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) C_ ( dom A u. ran A ) ) -> ( dom A X. ran ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) )
21 5 19 20 mp2an
 |-  ( dom A X. ran ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) )
22 18 21 sstri
 |-  ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. A ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) )
23 xpidtr
 |-  ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) )
24 22 23 unssi
 |-  ( ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. A ) u. ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) )
25 17 24 eqsstri
 |-  ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) )
26 16 25 unssi
 |-  ( ( A o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) u. ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) )
27 2 26 eqsstri
 |-  ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) )
28 ssun2
 |-  ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) )
29 27 28 sstri
 |-  ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) )
30 dmun
 |-  dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) = ( dom A u. dom ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) )
31 dmxpid
 |-  dom ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) = ( dom A u. ran A )
32 31 uneq2i
 |-  ( dom A u. dom ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) = ( dom A u. ( dom A u. ran A ) )
33 ssequn1
 |-  ( dom A C_ ( dom A u. ran A ) <-> ( dom A u. ( dom A u. ran A ) ) = ( dom A u. ran A ) )
34 5 33 mpbi
 |-  ( dom A u. ( dom A u. ran A ) ) = ( dom A u. ran A )
35 30 32 34 3eqtri
 |-  dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) = ( dom A u. ran A )
36 rnun
 |-  ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) = ( ran A u. ran ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) )
37 rnxpid
 |-  ran ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) = ( dom A u. ran A )
38 37 uneq2i
 |-  ( ran A u. ran ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) = ( ran A u. ( dom A u. ran A ) )
39 ssequn1
 |-  ( ran A C_ ( dom A u. ran A ) <-> ( ran A u. ( dom A u. ran A ) ) = ( dom A u. ran A ) )
40 6 39 mpbi
 |-  ( ran A u. ( dom A u. ran A ) ) = ( dom A u. ran A )
41 36 38 40 3eqtri
 |-  ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) = ( dom A u. ran A )
42 35 41 uneq12i
 |-  ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) = ( ( dom A u. ran A ) u. ( dom A u. ran A ) )
43 unidm
 |-  ( ( dom A u. ran A ) u. ( dom A u. ran A ) ) = ( dom A u. ran A )
44 42 43 eqtri
 |-  ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) = ( dom A u. ran A )
45 44 reseq2i
 |-  ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) = ( _I |` ( dom A u. ran A ) )
46 idssxp
 |-  ( _I |` ( dom A u. ran A ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) )
47 45 46 eqsstri
 |-  ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) )
48 47 28 sstri
 |-  ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) )
49 29 48 pm3.2i
 |-  ( ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) /\ ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) )
50 rtrclexlem
 |-  ( A e. _V -> ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) e. _V )
51 id
 |-  ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) )
52 51 51 coeq12d
 |-  ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> ( x o. x ) = ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) )
53 52 51 sseq12d
 |-  ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> ( ( x o. x ) C_ x <-> ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) )
54 dmeq
 |-  ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> dom x = dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) )
55 rneq
 |-  ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> ran x = ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) )
56 54 55 uneq12d
 |-  ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> ( dom x u. ran x ) = ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) )
57 56 reseq2d
 |-  ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> ( _I |` ( dom x u. ran x ) ) = ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) )
58 57 51 sseq12d
 |-  ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> ( ( _I |` ( dom x u. ran x ) ) C_ x <-> ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) )
59 53 58 anbi12d
 |-  ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> ( ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) <-> ( ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) /\ ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) )
60 59 cleq2lem
 |-  ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> ( ( A C_ x /\ ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) ) <-> ( A C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) /\ ( ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) /\ ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) ) )
61 60 biimprd
 |-  ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> ( ( A C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) /\ ( ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) /\ ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) -> ( A C_ x /\ ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) ) ) )
62 61 adantl
 |-  ( ( A e. _V /\ x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) -> ( ( A C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) /\ ( ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) /\ ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) -> ( A C_ x /\ ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) ) ) )
63 50 62 spcimedv
 |-  ( A e. _V -> ( ( A C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) /\ ( ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) /\ ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) -> E. x ( A C_ x /\ ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) ) ) )
64 1 49 63 mp2ani
 |-  ( A e. _V -> E. x ( A C_ x /\ ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) ) )
65 exsimpl
 |-  ( E. x ( A C_ x /\ ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) ) -> E. x A C_ x )
66 vex
 |-  x e. _V
67 66 ssex
 |-  ( A C_ x -> A e. _V )
68 67 exlimiv
 |-  ( E. x A C_ x -> A e. _V )
69 65 68 syl
 |-  ( E. x ( A C_ x /\ ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) ) -> A e. _V )
70 64 69 impbii
 |-  ( A e. _V <-> E. x ( A C_ x /\ ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) ) )
71 intexab
 |-  ( E. x ( A C_ x /\ ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) ) <-> |^| { x | ( A C_ x /\ ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) ) } e. _V )
72 70 71 bitri
 |-  ( A e. _V <-> |^| { x | ( A C_ x /\ ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) ) } e. _V )