Step |
Hyp |
Ref |
Expression |
1 |
|
ssun1 |
|- A C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) |
2 |
|
coundir |
|- ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) = ( ( A o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) u. ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) |
3 |
|
coundi |
|- ( A o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) = ( ( A o. A ) u. ( A o. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) |
4 |
|
cossxp |
|- ( A o. A ) C_ ( dom A X. ran A ) |
5 |
|
ssun1 |
|- dom A C_ ( dom A u. ran A ) |
6 |
|
ssun2 |
|- ran A C_ ( dom A u. ran A ) |
7 |
|
xpss12 |
|- ( ( dom A C_ ( dom A u. ran A ) /\ ran A C_ ( dom A u. ran A ) ) -> ( dom A X. ran A ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) |
8 |
5 6 7
|
mp2an |
|- ( dom A X. ran A ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) |
9 |
4 8
|
sstri |
|- ( A o. A ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) |
10 |
|
cossxp |
|- ( A o. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) C_ ( dom ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) X. ran A ) |
11 |
|
dmxpss |
|- dom ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) C_ ( dom A u. ran A ) |
12 |
|
xpss12 |
|- ( ( dom ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) C_ ( dom A u. ran A ) /\ ran A C_ ( dom A u. ran A ) ) -> ( dom ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) X. ran A ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) |
13 |
11 6 12
|
mp2an |
|- ( dom ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) X. ran A ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) |
14 |
10 13
|
sstri |
|- ( A o. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) |
15 |
9 14
|
unssi |
|- ( ( A o. A ) u. ( A o. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) |
16 |
3 15
|
eqsstri |
|- ( A o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) |
17 |
|
coundi |
|- ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) = ( ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. A ) u. ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) |
18 |
|
cossxp |
|- ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. A ) C_ ( dom A X. ran ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) |
19 |
|
rnxpss |
|- ran ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) C_ ( dom A u. ran A ) |
20 |
|
xpss12 |
|- ( ( dom A C_ ( dom A u. ran A ) /\ ran ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) C_ ( dom A u. ran A ) ) -> ( dom A X. ran ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) |
21 |
5 19 20
|
mp2an |
|- ( dom A X. ran ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) |
22 |
18 21
|
sstri |
|- ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. A ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) |
23 |
|
xpidtr |
|- ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) |
24 |
22 23
|
unssi |
|- ( ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. A ) u. ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) |
25 |
17 24
|
eqsstri |
|- ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) |
26 |
16 25
|
unssi |
|- ( ( A o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) u. ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) |
27 |
2 26
|
eqsstri |
|- ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) |
28 |
|
ssun2 |
|- ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) |
29 |
27 28
|
sstri |
|- ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) |
30 |
|
dmun |
|- dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) = ( dom A u. dom ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) |
31 |
|
dmxpid |
|- dom ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) = ( dom A u. ran A ) |
32 |
31
|
uneq2i |
|- ( dom A u. dom ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) = ( dom A u. ( dom A u. ran A ) ) |
33 |
|
ssequn1 |
|- ( dom A C_ ( dom A u. ran A ) <-> ( dom A u. ( dom A u. ran A ) ) = ( dom A u. ran A ) ) |
34 |
5 33
|
mpbi |
|- ( dom A u. ( dom A u. ran A ) ) = ( dom A u. ran A ) |
35 |
30 32 34
|
3eqtri |
|- dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) = ( dom A u. ran A ) |
36 |
|
rnun |
|- ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) = ( ran A u. ran ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) |
37 |
|
rnxpid |
|- ran ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) = ( dom A u. ran A ) |
38 |
37
|
uneq2i |
|- ( ran A u. ran ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) = ( ran A u. ( dom A u. ran A ) ) |
39 |
|
ssequn1 |
|- ( ran A C_ ( dom A u. ran A ) <-> ( ran A u. ( dom A u. ran A ) ) = ( dom A u. ran A ) ) |
40 |
6 39
|
mpbi |
|- ( ran A u. ( dom A u. ran A ) ) = ( dom A u. ran A ) |
41 |
36 38 40
|
3eqtri |
|- ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) = ( dom A u. ran A ) |
42 |
35 41
|
uneq12i |
|- ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) = ( ( dom A u. ran A ) u. ( dom A u. ran A ) ) |
43 |
|
unidm |
|- ( ( dom A u. ran A ) u. ( dom A u. ran A ) ) = ( dom A u. ran A ) |
44 |
42 43
|
eqtri |
|- ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) = ( dom A u. ran A ) |
45 |
44
|
reseq2i |
|- ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) = ( _I |` ( dom A u. ran A ) ) |
46 |
|
idssxp |
|- ( _I |` ( dom A u. ran A ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) |
47 |
45 46
|
eqsstri |
|- ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) |
48 |
47 28
|
sstri |
|- ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) |
49 |
29 48
|
pm3.2i |
|- ( ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) /\ ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) |
50 |
|
rtrclexlem |
|- ( A e. _V -> ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) e. _V ) |
51 |
|
id |
|- ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) |
52 |
51 51
|
coeq12d |
|- ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> ( x o. x ) = ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) |
53 |
52 51
|
sseq12d |
|- ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> ( ( x o. x ) C_ x <-> ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) |
54 |
|
dmeq |
|- ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> dom x = dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) |
55 |
|
rneq |
|- ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> ran x = ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) |
56 |
54 55
|
uneq12d |
|- ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> ( dom x u. ran x ) = ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) |
57 |
56
|
reseq2d |
|- ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> ( _I |` ( dom x u. ran x ) ) = ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) ) |
58 |
57 51
|
sseq12d |
|- ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> ( ( _I |` ( dom x u. ran x ) ) C_ x <-> ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) |
59 |
53 58
|
anbi12d |
|- ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> ( ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) <-> ( ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) /\ ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) ) |
60 |
59
|
cleq2lem |
|- ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> ( ( A C_ x /\ ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) ) <-> ( A C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) /\ ( ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) /\ ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) ) ) |
61 |
60
|
biimprd |
|- ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> ( ( A C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) /\ ( ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) /\ ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) -> ( A C_ x /\ ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) ) ) ) |
62 |
61
|
adantl |
|- ( ( A e. _V /\ x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) -> ( ( A C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) /\ ( ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) /\ ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) -> ( A C_ x /\ ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) ) ) ) |
63 |
50 62
|
spcimedv |
|- ( A e. _V -> ( ( A C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) /\ ( ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) /\ ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) -> E. x ( A C_ x /\ ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) ) ) ) |
64 |
1 49 63
|
mp2ani |
|- ( A e. _V -> E. x ( A C_ x /\ ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) ) ) |
65 |
|
exsimpl |
|- ( E. x ( A C_ x /\ ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) ) -> E. x A C_ x ) |
66 |
|
vex |
|- x e. _V |
67 |
66
|
ssex |
|- ( A C_ x -> A e. _V ) |
68 |
67
|
exlimiv |
|- ( E. x A C_ x -> A e. _V ) |
69 |
65 68
|
syl |
|- ( E. x ( A C_ x /\ ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) ) -> A e. _V ) |
70 |
64 69
|
impbii |
|- ( A e. _V <-> E. x ( A C_ x /\ ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) ) ) |
71 |
|
intexab |
|- ( E. x ( A C_ x /\ ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) ) <-> |^| { x | ( A C_ x /\ ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) ) } e. _V ) |
72 |
70 71
|
bitri |
|- ( A e. _V <-> |^| { x | ( A C_ x /\ ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) ) } e. _V ) |