Metamath Proof Explorer


Theorem rtrclex

Description: The reflexive-transitive closure of a set exists. (Contributed by RP, 1-Nov-2020)

Ref Expression
Assertion rtrclex A V x | A x x x x I dom x ran x x V

Proof

Step Hyp Ref Expression
1 ssun1 A A dom A ran A × dom A ran A
2 coundir A dom A ran A × dom A ran A A dom A ran A × dom A ran A = A A dom A ran A × dom A ran A dom A ran A × dom A ran A A dom A ran A × dom A ran A
3 coundi A A dom A ran A × dom A ran A = A A A dom A ran A × dom A ran A
4 cossxp A A dom A × ran A
5 ssun1 dom A dom A ran A
6 ssun2 ran A dom A ran A
7 xpss12 dom A dom A ran A ran A dom A ran A dom A × ran A dom A ran A × dom A ran A
8 5 6 7 mp2an dom A × ran A dom A ran A × dom A ran A
9 4 8 sstri A A dom A ran A × dom A ran A
10 cossxp A dom A ran A × dom A ran A dom dom A ran A × dom A ran A × ran A
11 dmxpss dom dom A ran A × dom A ran A dom A ran A
12 xpss12 dom dom A ran A × dom A ran A dom A ran A ran A dom A ran A dom dom A ran A × dom A ran A × ran A dom A ran A × dom A ran A
13 11 6 12 mp2an dom dom A ran A × dom A ran A × ran A dom A ran A × dom A ran A
14 10 13 sstri A dom A ran A × dom A ran A dom A ran A × dom A ran A
15 9 14 unssi A A A dom A ran A × dom A ran A dom A ran A × dom A ran A
16 3 15 eqsstri A A dom A ran A × dom A ran A dom A ran A × dom A ran A
17 coundi dom A ran A × dom A ran A A dom A ran A × dom A ran A = dom A ran A × dom A ran A A dom A ran A × dom A ran A dom A ran A × dom A ran A
18 cossxp dom A ran A × dom A ran A A dom A × ran dom A ran A × dom A ran A
19 rnxpss ran dom A ran A × dom A ran A dom A ran A
20 xpss12 dom A dom A ran A ran dom A ran A × dom A ran A dom A ran A dom A × ran dom A ran A × dom A ran A dom A ran A × dom A ran A
21 5 19 20 mp2an dom A × ran dom A ran A × dom A ran A dom A ran A × dom A ran A
22 18 21 sstri dom A ran A × dom A ran A A dom A ran A × dom A ran A
23 xpidtr dom A ran A × dom A ran A dom A ran A × dom A ran A dom A ran A × dom A ran A
24 22 23 unssi dom A ran A × dom A ran A A dom A ran A × dom A ran A dom A ran A × dom A ran A dom A ran A × dom A ran A
25 17 24 eqsstri dom A ran A × dom A ran A A dom A ran A × dom A ran A dom A ran A × dom A ran A
26 16 25 unssi A A dom A ran A × dom A ran A dom A ran A × dom A ran A A dom A ran A × dom A ran A dom A ran A × dom A ran A
27 2 26 eqsstri A dom A ran A × dom A ran A A dom A ran A × dom A ran A dom A ran A × dom A ran A
28 ssun2 dom A ran A × dom A ran A A dom A ran A × dom A ran A
29 27 28 sstri A dom A ran A × dom A ran A A dom A ran A × dom A ran A A dom A ran A × dom A ran A
30 dmun dom A dom A ran A × dom A ran A = dom A dom dom A ran A × dom A ran A
31 dmxpid dom dom A ran A × dom A ran A = dom A ran A
32 31 uneq2i dom A dom dom A ran A × dom A ran A = dom A dom A ran A
33 ssequn1 dom A dom A ran A dom A dom A ran A = dom A ran A
34 5 33 mpbi dom A dom A ran A = dom A ran A
35 30 32 34 3eqtri dom A dom A ran A × dom A ran A = dom A ran A
36 rnun ran A dom A ran A × dom A ran A = ran A ran dom A ran A × dom A ran A
37 rnxpid ran dom A ran A × dom A ran A = dom A ran A
38 37 uneq2i ran A ran dom A ran A × dom A ran A = ran A dom A ran A
39 ssequn1 ran A dom A ran A ran A dom A ran A = dom A ran A
40 6 39 mpbi ran A dom A ran A = dom A ran A
41 36 38 40 3eqtri ran A dom A ran A × dom A ran A = dom A ran A
42 35 41 uneq12i dom A dom A ran A × dom A ran A ran A dom A ran A × dom A ran A = dom A ran A dom A ran A
43 unidm dom A ran A dom A ran A = dom A ran A
44 42 43 eqtri dom A dom A ran A × dom A ran A ran A dom A ran A × dom A ran A = dom A ran A
45 44 reseq2i I dom A dom A ran A × dom A ran A ran A dom A ran A × dom A ran A = I dom A ran A
46 idssxp I dom A ran A dom A ran A × dom A ran A
47 45 46 eqsstri I dom A dom A ran A × dom A ran A ran A dom A ran A × dom A ran A dom A ran A × dom A ran A
48 47 28 sstri I dom A dom A ran A × dom A ran A ran A dom A ran A × dom A ran A A dom A ran A × dom A ran A
49 29 48 pm3.2i A dom A ran A × dom A ran A A dom A ran A × dom A ran A A dom A ran A × dom A ran A I dom A dom A ran A × dom A ran A ran A dom A ran A × dom A ran A A dom A ran A × dom A ran A
50 rtrclexlem A V A dom A ran A × dom A ran A V
51 id x = A dom A ran A × dom A ran A x = A dom A ran A × dom A ran A
52 51 51 coeq12d x = A dom A ran A × dom A ran A x x = A dom A ran A × dom A ran A A dom A ran A × dom A ran A
53 52 51 sseq12d x = A dom A ran A × dom A ran A x x x A dom A ran A × dom A ran A A dom A ran A × dom A ran A A dom A ran A × dom A ran A
54 dmeq x = A dom A ran A × dom A ran A dom x = dom A dom A ran A × dom A ran A
55 rneq x = A dom A ran A × dom A ran A ran x = ran A dom A ran A × dom A ran A
56 54 55 uneq12d x = A dom A ran A × dom A ran A dom x ran x = dom A dom A ran A × dom A ran A ran A dom A ran A × dom A ran A
57 56 reseq2d x = A dom A ran A × dom A ran A I dom x ran x = I dom A dom A ran A × dom A ran A ran A dom A ran A × dom A ran A
58 57 51 sseq12d x = A dom A ran A × dom A ran A I dom x ran x x I dom A dom A ran A × dom A ran A ran A dom A ran A × dom A ran A A dom A ran A × dom A ran A
59 53 58 anbi12d x = A dom A ran A × dom A ran A x x x I dom x ran x x A dom A ran A × dom A ran A A dom A ran A × dom A ran A A dom A ran A × dom A ran A I dom A dom A ran A × dom A ran A ran A dom A ran A × dom A ran A A dom A ran A × dom A ran A
60 59 cleq2lem x = A dom A ran A × dom A ran A A x x x x I dom x ran x x A A dom A ran A × dom A ran A A dom A ran A × dom A ran A A dom A ran A × dom A ran A A dom A ran A × dom A ran A I dom A dom A ran A × dom A ran A ran A dom A ran A × dom A ran A A dom A ran A × dom A ran A
61 60 biimprd x = A dom A ran A × dom A ran A A A dom A ran A × dom A ran A A dom A ran A × dom A ran A A dom A ran A × dom A ran A A dom A ran A × dom A ran A I dom A dom A ran A × dom A ran A ran A dom A ran A × dom A ran A A dom A ran A × dom A ran A A x x x x I dom x ran x x
62 61 adantl A V x = A dom A ran A × dom A ran A A A dom A ran A × dom A ran A A dom A ran A × dom A ran A A dom A ran A × dom A ran A A dom A ran A × dom A ran A I dom A dom A ran A × dom A ran A ran A dom A ran A × dom A ran A A dom A ran A × dom A ran A A x x x x I dom x ran x x
63 50 62 spcimedv A V A A dom A ran A × dom A ran A A dom A ran A × dom A ran A A dom A ran A × dom A ran A A dom A ran A × dom A ran A I dom A dom A ran A × dom A ran A ran A dom A ran A × dom A ran A A dom A ran A × dom A ran A x A x x x x I dom x ran x x
64 1 49 63 mp2ani A V x A x x x x I dom x ran x x
65 exsimpl x A x x x x I dom x ran x x x A x
66 vex x V
67 66 ssex A x A V
68 67 exlimiv x A x A V
69 65 68 syl x A x x x x I dom x ran x x A V
70 64 69 impbii A V x A x x x x I dom x ran x x
71 intexab x A x x x x I dom x ran x x x | A x x x x I dom x ran x x V
72 70 71 bitri A V x | A x x x x I dom x ran x x V