| Step | Hyp | Ref | Expression | 
						
							| 1 |  | scutbdaybnd2 |  |-  ( A < ( bday ` ( A |s B ) ) C_ suc U. ( bday " ( A u. B ) ) ) | 
						
							| 2 | 1 | adantr |  |-  ( ( A < ( bday ` ( A |s B ) ) C_ suc U. ( bday " ( A u. B ) ) ) | 
						
							| 3 |  | bdayfun |  |-  Fun bday | 
						
							| 4 |  | ssltex1 |  |-  ( A < A e. _V ) | 
						
							| 5 |  | ssltex2 |  |-  ( A < B e. _V ) | 
						
							| 6 |  | unexg |  |-  ( ( A e. _V /\ B e. _V ) -> ( A u. B ) e. _V ) | 
						
							| 7 | 4 5 6 | syl2anc |  |-  ( A < ( A u. B ) e. _V ) | 
						
							| 8 |  | funimaexg |  |-  ( ( Fun bday /\ ( A u. B ) e. _V ) -> ( bday " ( A u. B ) ) e. _V ) | 
						
							| 9 | 3 7 8 | sylancr |  |-  ( A < ( bday " ( A u. B ) ) e. _V ) | 
						
							| 10 | 9 | uniexd |  |-  ( A < U. ( bday " ( A u. B ) ) e. _V ) | 
						
							| 11 | 10 | adantr |  |-  ( ( A < U. ( bday " ( A u. B ) ) e. _V ) | 
						
							| 12 |  | nlimsucg |  |-  ( U. ( bday " ( A u. B ) ) e. _V -> -. Lim suc U. ( bday " ( A u. B ) ) ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( A < -. Lim suc U. ( bday " ( A u. B ) ) ) | 
						
							| 14 |  | limeq |  |-  ( ( bday ` ( A |s B ) ) = suc U. ( bday " ( A u. B ) ) -> ( Lim ( bday ` ( A |s B ) ) <-> Lim suc U. ( bday " ( A u. B ) ) ) ) | 
						
							| 15 | 14 | biimpcd |  |-  ( Lim ( bday ` ( A |s B ) ) -> ( ( bday ` ( A |s B ) ) = suc U. ( bday " ( A u. B ) ) -> Lim suc U. ( bday " ( A u. B ) ) ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( A < ( ( bday ` ( A |s B ) ) = suc U. ( bday " ( A u. B ) ) -> Lim suc U. ( bday " ( A u. B ) ) ) ) | 
						
							| 17 | 13 16 | mtod |  |-  ( ( A < -. ( bday ` ( A |s B ) ) = suc U. ( bday " ( A u. B ) ) ) | 
						
							| 18 | 17 | neqned |  |-  ( ( A < ( bday ` ( A |s B ) ) =/= suc U. ( bday " ( A u. B ) ) ) | 
						
							| 19 |  | bdayelon |  |-  ( bday ` ( A |s B ) ) e. On | 
						
							| 20 | 19 | onordi |  |-  Ord ( bday ` ( A |s B ) ) | 
						
							| 21 |  | imassrn |  |-  ( bday " ( A u. B ) ) C_ ran bday | 
						
							| 22 |  | bdayrn |  |-  ran bday = On | 
						
							| 23 | 21 22 | sseqtri |  |-  ( bday " ( A u. B ) ) C_ On | 
						
							| 24 |  | ssorduni |  |-  ( ( bday " ( A u. B ) ) C_ On -> Ord U. ( bday " ( A u. B ) ) ) | 
						
							| 25 | 23 24 | ax-mp |  |-  Ord U. ( bday " ( A u. B ) ) | 
						
							| 26 |  | ordsuc |  |-  ( Ord U. ( bday " ( A u. B ) ) <-> Ord suc U. ( bday " ( A u. B ) ) ) | 
						
							| 27 | 25 26 | mpbi |  |-  Ord suc U. ( bday " ( A u. B ) ) | 
						
							| 28 |  | ordelssne |  |-  ( ( Ord ( bday ` ( A |s B ) ) /\ Ord suc U. ( bday " ( A u. B ) ) ) -> ( ( bday ` ( A |s B ) ) e. suc U. ( bday " ( A u. B ) ) <-> ( ( bday ` ( A |s B ) ) C_ suc U. ( bday " ( A u. B ) ) /\ ( bday ` ( A |s B ) ) =/= suc U. ( bday " ( A u. B ) ) ) ) ) | 
						
							| 29 | 20 27 28 | mp2an |  |-  ( ( bday ` ( A |s B ) ) e. suc U. ( bday " ( A u. B ) ) <-> ( ( bday ` ( A |s B ) ) C_ suc U. ( bday " ( A u. B ) ) /\ ( bday ` ( A |s B ) ) =/= suc U. ( bday " ( A u. B ) ) ) ) | 
						
							| 30 | 2 18 29 | sylanbrc |  |-  ( ( A < ( bday ` ( A |s B ) ) e. suc U. ( bday " ( A u. B ) ) ) | 
						
							| 31 | 19 | a1i |  |-  ( ( A < ( bday ` ( A |s B ) ) e. On ) | 
						
							| 32 |  | ordsssuc |  |-  ( ( ( bday ` ( A |s B ) ) e. On /\ Ord U. ( bday " ( A u. B ) ) ) -> ( ( bday ` ( A |s B ) ) C_ U. ( bday " ( A u. B ) ) <-> ( bday ` ( A |s B ) ) e. suc U. ( bday " ( A u. B ) ) ) ) | 
						
							| 33 | 31 25 32 | sylancl |  |-  ( ( A < ( ( bday ` ( A |s B ) ) C_ U. ( bday " ( A u. B ) ) <-> ( bday ` ( A |s B ) ) e. suc U. ( bday " ( A u. B ) ) ) ) | 
						
							| 34 | 30 33 | mpbird |  |-  ( ( A < ( bday ` ( A |s B ) ) C_ U. ( bday " ( A u. B ) ) ) |