Step |
Hyp |
Ref |
Expression |
1 |
|
scutbdaybnd2 |
|- ( A < ( bday ` ( A |s B ) ) C_ suc U. ( bday " ( A u. B ) ) ) |
2 |
1
|
adantr |
|- ( ( A < ( bday ` ( A |s B ) ) C_ suc U. ( bday " ( A u. B ) ) ) |
3 |
|
bdayfun |
|- Fun bday |
4 |
|
ssltex1 |
|- ( A < A e. _V ) |
5 |
|
ssltex2 |
|- ( A < B e. _V ) |
6 |
|
unexg |
|- ( ( A e. _V /\ B e. _V ) -> ( A u. B ) e. _V ) |
7 |
4 5 6
|
syl2anc |
|- ( A < ( A u. B ) e. _V ) |
8 |
|
funimaexg |
|- ( ( Fun bday /\ ( A u. B ) e. _V ) -> ( bday " ( A u. B ) ) e. _V ) |
9 |
3 7 8
|
sylancr |
|- ( A < ( bday " ( A u. B ) ) e. _V ) |
10 |
9
|
uniexd |
|- ( A < U. ( bday " ( A u. B ) ) e. _V ) |
11 |
10
|
adantr |
|- ( ( A < U. ( bday " ( A u. B ) ) e. _V ) |
12 |
|
nlimsucg |
|- ( U. ( bday " ( A u. B ) ) e. _V -> -. Lim suc U. ( bday " ( A u. B ) ) ) |
13 |
11 12
|
syl |
|- ( ( A < -. Lim suc U. ( bday " ( A u. B ) ) ) |
14 |
|
limeq |
|- ( ( bday ` ( A |s B ) ) = suc U. ( bday " ( A u. B ) ) -> ( Lim ( bday ` ( A |s B ) ) <-> Lim suc U. ( bday " ( A u. B ) ) ) ) |
15 |
14
|
biimpcd |
|- ( Lim ( bday ` ( A |s B ) ) -> ( ( bday ` ( A |s B ) ) = suc U. ( bday " ( A u. B ) ) -> Lim suc U. ( bday " ( A u. B ) ) ) ) |
16 |
15
|
adantl |
|- ( ( A < ( ( bday ` ( A |s B ) ) = suc U. ( bday " ( A u. B ) ) -> Lim suc U. ( bday " ( A u. B ) ) ) ) |
17 |
13 16
|
mtod |
|- ( ( A < -. ( bday ` ( A |s B ) ) = suc U. ( bday " ( A u. B ) ) ) |
18 |
17
|
neqned |
|- ( ( A < ( bday ` ( A |s B ) ) =/= suc U. ( bday " ( A u. B ) ) ) |
19 |
|
bdayelon |
|- ( bday ` ( A |s B ) ) e. On |
20 |
19
|
onordi |
|- Ord ( bday ` ( A |s B ) ) |
21 |
|
imassrn |
|- ( bday " ( A u. B ) ) C_ ran bday |
22 |
|
bdayrn |
|- ran bday = On |
23 |
21 22
|
sseqtri |
|- ( bday " ( A u. B ) ) C_ On |
24 |
|
ssorduni |
|- ( ( bday " ( A u. B ) ) C_ On -> Ord U. ( bday " ( A u. B ) ) ) |
25 |
23 24
|
ax-mp |
|- Ord U. ( bday " ( A u. B ) ) |
26 |
|
ordsuc |
|- ( Ord U. ( bday " ( A u. B ) ) <-> Ord suc U. ( bday " ( A u. B ) ) ) |
27 |
25 26
|
mpbi |
|- Ord suc U. ( bday " ( A u. B ) ) |
28 |
|
ordelssne |
|- ( ( Ord ( bday ` ( A |s B ) ) /\ Ord suc U. ( bday " ( A u. B ) ) ) -> ( ( bday ` ( A |s B ) ) e. suc U. ( bday " ( A u. B ) ) <-> ( ( bday ` ( A |s B ) ) C_ suc U. ( bday " ( A u. B ) ) /\ ( bday ` ( A |s B ) ) =/= suc U. ( bday " ( A u. B ) ) ) ) ) |
29 |
20 27 28
|
mp2an |
|- ( ( bday ` ( A |s B ) ) e. suc U. ( bday " ( A u. B ) ) <-> ( ( bday ` ( A |s B ) ) C_ suc U. ( bday " ( A u. B ) ) /\ ( bday ` ( A |s B ) ) =/= suc U. ( bday " ( A u. B ) ) ) ) |
30 |
2 18 29
|
sylanbrc |
|- ( ( A < ( bday ` ( A |s B ) ) e. suc U. ( bday " ( A u. B ) ) ) |
31 |
19
|
a1i |
|- ( ( A < ( bday ` ( A |s B ) ) e. On ) |
32 |
|
ordsssuc |
|- ( ( ( bday ` ( A |s B ) ) e. On /\ Ord U. ( bday " ( A u. B ) ) ) -> ( ( bday ` ( A |s B ) ) C_ U. ( bday " ( A u. B ) ) <-> ( bday ` ( A |s B ) ) e. suc U. ( bday " ( A u. B ) ) ) ) |
33 |
31 25 32
|
sylancl |
|- ( ( A < ( ( bday ` ( A |s B ) ) C_ U. ( bday " ( A u. B ) ) <-> ( bday ` ( A |s B ) ) e. suc U. ( bday " ( A u. B ) ) ) ) |
34 |
30 33
|
mpbird |
|- ( ( A < ( bday ` ( A |s B ) ) C_ U. ( bday " ( A u. B ) ) ) |