Step |
Hyp |
Ref |
Expression |
1 |
|
simp2l |
|- ( ( X e. No /\ ( A < A < |
2 |
|
simp2r |
|- ( ( X e. No /\ ( A < { X } < |
3 |
|
snnzg |
|- ( X e. No -> { X } =/= (/) ) |
4 |
3
|
3ad2ant1 |
|- ( ( X e. No /\ ( A < { X } =/= (/) ) |
5 |
|
sslttr |
|- ( ( A < A < |
6 |
1 2 4 5
|
syl3anc |
|- ( ( X e. No /\ ( A < A < |
7 |
|
scutbday |
|- ( A < ( bday ` ( A |s B ) ) = |^| ( bday " { y e. No | ( A < |
8 |
6 7
|
syl |
|- ( ( X e. No /\ ( A < ( bday ` ( A |s B ) ) = |^| ( bday " { y e. No | ( A < |
9 |
|
bdayfn |
|- bday Fn No |
10 |
|
ssrab2 |
|- { y e. No | ( A < |
11 |
|
simp1 |
|- ( ( X e. No /\ ( A < X e. No ) |
12 |
|
simp2 |
|- ( ( X e. No /\ ( A < ( A < |
13 |
|
sneq |
|- ( y = X -> { y } = { X } ) |
14 |
13
|
breq2d |
|- ( y = X -> ( A < A < |
15 |
13
|
breq1d |
|- ( y = X -> ( { y } < { X } < |
16 |
14 15
|
anbi12d |
|- ( y = X -> ( ( A < ( A < |
17 |
16
|
elrab |
|- ( X e. { y e. No | ( A < ( X e. No /\ ( A < |
18 |
11 12 17
|
sylanbrc |
|- ( ( X e. No /\ ( A < X e. { y e. No | ( A < |
19 |
|
fnfvima |
|- ( ( bday Fn No /\ { y e. No | ( A < ( bday ` X ) e. ( bday " { y e. No | ( A < |
20 |
9 10 18 19
|
mp3an12i |
|- ( ( X e. No /\ ( A < ( bday ` X ) e. ( bday " { y e. No | ( A < |
21 |
|
intss1 |
|- ( ( bday ` X ) e. ( bday " { y e. No | ( A < |^| ( bday " { y e. No | ( A < |
22 |
20 21
|
syl |
|- ( ( X e. No /\ ( A < |^| ( bday " { y e. No | ( A < |
23 |
8 22
|
eqsstrd |
|- ( ( X e. No /\ ( A < ( bday ` ( A |s B ) ) C_ ( bday ` X ) ) |
24 |
|
simprl |
|- ( ( X e. No /\ ( A < A < |
25 |
|
simprr |
|- ( ( X e. No /\ ( A < { X } < |
26 |
3
|
adantr |
|- ( ( X e. No /\ ( A < { X } =/= (/) ) |
27 |
24 25 26 5
|
syl3anc |
|- ( ( X e. No /\ ( A < A < |
28 |
27 7
|
syl |
|- ( ( X e. No /\ ( A < ( bday ` ( A |s B ) ) = |^| ( bday " { y e. No | ( A < |
29 |
28
|
eqeq1d |
|- ( ( X e. No /\ ( A < ( ( bday ` ( A |s B ) ) = ( bday ` X ) <-> |^| ( bday " { y e. No | ( A < |
30 |
|
eqcom |
|- ( |^| ( bday " { y e. No | ( A < ( bday ` X ) = |^| ( bday " { y e. No | ( A < |
31 |
29 30
|
bitrdi |
|- ( ( X e. No /\ ( A < ( ( bday ` ( A |s B ) ) = ( bday ` X ) <-> ( bday ` X ) = |^| ( bday " { y e. No | ( A < |
32 |
31
|
biimpa |
|- ( ( ( X e. No /\ ( A < ( bday ` X ) = |^| ( bday " { y e. No | ( A < |
33 |
17
|
biimpri |
|- ( ( X e. No /\ ( A < X e. { y e. No | ( A < |
34 |
27
|
adantr |
|- ( ( ( X e. No /\ ( A < A < |
35 |
|
conway |
|- ( A < E! x e. { y e. No | ( A < |
36 |
34 35
|
syl |
|- ( ( ( X e. No /\ ( A < E! x e. { y e. No | ( A < |
37 |
|
fveqeq2 |
|- ( x = X -> ( ( bday ` x ) = |^| ( bday " { y e. No | ( A < ( bday ` X ) = |^| ( bday " { y e. No | ( A < |
38 |
37
|
riota2 |
|- ( ( X e. { y e. No | ( A < ( ( bday ` X ) = |^| ( bday " { y e. No | ( A < ( iota_ x e. { y e. No | ( A < |
39 |
|
eqcom |
|- ( ( iota_ x e. { y e. No | ( A < X = ( iota_ x e. { y e. No | ( A < |
40 |
38 39
|
bitrdi |
|- ( ( X e. { y e. No | ( A < ( ( bday ` X ) = |^| ( bday " { y e. No | ( A < X = ( iota_ x e. { y e. No | ( A < |
41 |
33 36 40
|
syl2an2r |
|- ( ( ( X e. No /\ ( A < ( ( bday ` X ) = |^| ( bday " { y e. No | ( A < X = ( iota_ x e. { y e. No | ( A < |
42 |
32 41
|
mpbid |
|- ( ( ( X e. No /\ ( A < X = ( iota_ x e. { y e. No | ( A < |
43 |
|
scutval |
|- ( A < ( A |s B ) = ( iota_ x e. { y e. No | ( A < |
44 |
34 43
|
syl |
|- ( ( ( X e. No /\ ( A < ( A |s B ) = ( iota_ x e. { y e. No | ( A < |
45 |
42 44
|
eqtr4d |
|- ( ( ( X e. No /\ ( A < X = ( A |s B ) ) |
46 |
45
|
ex |
|- ( ( X e. No /\ ( A < ( ( bday ` ( A |s B ) ) = ( bday ` X ) -> X = ( A |s B ) ) ) |
47 |
46
|
necon3d |
|- ( ( X e. No /\ ( A < ( X =/= ( A |s B ) -> ( bday ` ( A |s B ) ) =/= ( bday ` X ) ) ) |
48 |
47
|
3impia |
|- ( ( X e. No /\ ( A < ( bday ` ( A |s B ) ) =/= ( bday ` X ) ) |
49 |
|
bdayelon |
|- ( bday ` ( A |s B ) ) e. On |
50 |
|
bdayelon |
|- ( bday ` X ) e. On |
51 |
|
onelpss |
|- ( ( ( bday ` ( A |s B ) ) e. On /\ ( bday ` X ) e. On ) -> ( ( bday ` ( A |s B ) ) e. ( bday ` X ) <-> ( ( bday ` ( A |s B ) ) C_ ( bday ` X ) /\ ( bday ` ( A |s B ) ) =/= ( bday ` X ) ) ) ) |
52 |
49 50 51
|
mp2an |
|- ( ( bday ` ( A |s B ) ) e. ( bday ` X ) <-> ( ( bday ` ( A |s B ) ) C_ ( bday ` X ) /\ ( bday ` ( A |s B ) ) =/= ( bday ` X ) ) ) |
53 |
23 48 52
|
sylanbrc |
|- ( ( X e. No /\ ( A < ( bday ` ( A |s B ) ) e. ( bday ` X ) ) |