Metamath Proof Explorer


Theorem scutbdaylt

Description: If a surreal lies in a gap and is not equal to the cut, its birthday is greater than the cut's. (Contributed by Scott Fenton, 11-Dec-2021)

Ref Expression
Assertion scutbdaylt X No A s X X s B X A | s B bday A | s B bday X

Proof

Step Hyp Ref Expression
1 simp2l X No A s X X s B X A | s B A s X
2 simp2r X No A s X X s B X A | s B X s B
3 snnzg X No X
4 3 3ad2ant1 X No A s X X s B X A | s B X
5 sslttr A s X X s B X A s B
6 1 2 4 5 syl3anc X No A s X X s B X A | s B A s B
7 scutbday A s B bday A | s B = bday y No | A s y y s B
8 6 7 syl X No A s X X s B X A | s B bday A | s B = bday y No | A s y y s B
9 bdayfn bday Fn No
10 ssrab2 y No | A s y y s B No
11 simp1 X No A s X X s B X A | s B X No
12 simp2 X No A s X X s B X A | s B A s X X s B
13 sneq y = X y = X
14 13 breq2d y = X A s y A s X
15 13 breq1d y = X y s B X s B
16 14 15 anbi12d y = X A s y y s B A s X X s B
17 16 elrab X y No | A s y y s B X No A s X X s B
18 11 12 17 sylanbrc X No A s X X s B X A | s B X y No | A s y y s B
19 fnfvima bday Fn No y No | A s y y s B No X y No | A s y y s B bday X bday y No | A s y y s B
20 9 10 18 19 mp3an12i X No A s X X s B X A | s B bday X bday y No | A s y y s B
21 intss1 bday X bday y No | A s y y s B bday y No | A s y y s B bday X
22 20 21 syl X No A s X X s B X A | s B bday y No | A s y y s B bday X
23 8 22 eqsstrd X No A s X X s B X A | s B bday A | s B bday X
24 simprl X No A s X X s B A s X
25 simprr X No A s X X s B X s B
26 3 adantr X No A s X X s B X
27 24 25 26 5 syl3anc X No A s X X s B A s B
28 27 7 syl X No A s X X s B bday A | s B = bday y No | A s y y s B
29 28 eqeq1d X No A s X X s B bday A | s B = bday X bday y No | A s y y s B = bday X
30 eqcom bday y No | A s y y s B = bday X bday X = bday y No | A s y y s B
31 29 30 bitrdi X No A s X X s B bday A | s B = bday X bday X = bday y No | A s y y s B
32 31 biimpa X No A s X X s B bday A | s B = bday X bday X = bday y No | A s y y s B
33 17 biimpri X No A s X X s B X y No | A s y y s B
34 27 adantr X No A s X X s B bday A | s B = bday X A s B
35 conway A s B ∃! x y No | A s y y s B bday x = bday y No | A s y y s B
36 34 35 syl X No A s X X s B bday A | s B = bday X ∃! x y No | A s y y s B bday x = bday y No | A s y y s B
37 fveqeq2 x = X bday x = bday y No | A s y y s B bday X = bday y No | A s y y s B
38 37 riota2 X y No | A s y y s B ∃! x y No | A s y y s B bday x = bday y No | A s y y s B bday X = bday y No | A s y y s B ι x y No | A s y y s B | bday x = bday y No | A s y y s B = X
39 eqcom ι x y No | A s y y s B | bday x = bday y No | A s y y s B = X X = ι x y No | A s y y s B | bday x = bday y No | A s y y s B
40 38 39 bitrdi X y No | A s y y s B ∃! x y No | A s y y s B bday x = bday y No | A s y y s B bday X = bday y No | A s y y s B X = ι x y No | A s y y s B | bday x = bday y No | A s y y s B
41 33 36 40 syl2an2r X No A s X X s B bday A | s B = bday X bday X = bday y No | A s y y s B X = ι x y No | A s y y s B | bday x = bday y No | A s y y s B
42 32 41 mpbid X No A s X X s B bday A | s B = bday X X = ι x y No | A s y y s B | bday x = bday y No | A s y y s B
43 scutval A s B A | s B = ι x y No | A s y y s B | bday x = bday y No | A s y y s B
44 34 43 syl X No A s X X s B bday A | s B = bday X A | s B = ι x y No | A s y y s B | bday x = bday y No | A s y y s B
45 42 44 eqtr4d X No A s X X s B bday A | s B = bday X X = A | s B
46 45 ex X No A s X X s B bday A | s B = bday X X = A | s B
47 46 necon3d X No A s X X s B X A | s B bday A | s B bday X
48 47 3impia X No A s X X s B X A | s B bday A | s B bday X
49 bdayelon bday A | s B On
50 bdayelon bday X On
51 onelpss bday A | s B On bday X On bday A | s B bday X bday A | s B bday X bday A | s B bday X
52 49 50 51 mp2an bday A | s B bday X bday A | s B bday X bday A | s B bday X
53 23 48 52 sylanbrc X No A s X X s B X A | s B bday A | s B bday X