Metamath Proof Explorer


Theorem scutbdaybnd2lim

Description: An upper bound on the birthday of a surreal cut when it is a limit birthday. (Contributed by Scott Fenton, 7-Aug-2024)

Ref Expression
Assertion scutbdaybnd2lim AsBLimbdayA|sBbdayA|sBbdayAB

Proof

Step Hyp Ref Expression
1 scutbdaybnd2 AsBbdayA|sBsucbdayAB
2 1 adantr AsBLimbdayA|sBbdayA|sBsucbdayAB
3 bdayfun Funbday
4 ssltex1 AsBAV
5 ssltex2 AsBBV
6 unexg AVBVABV
7 4 5 6 syl2anc AsBABV
8 funimaexg FunbdayABVbdayABV
9 3 7 8 sylancr AsBbdayABV
10 9 uniexd AsBbdayABV
11 10 adantr AsBLimbdayA|sBbdayABV
12 nlimsucg bdayABV¬LimsucbdayAB
13 11 12 syl AsBLimbdayA|sB¬LimsucbdayAB
14 limeq bdayA|sB=sucbdayABLimbdayA|sBLimsucbdayAB
15 14 biimpcd LimbdayA|sBbdayA|sB=sucbdayABLimsucbdayAB
16 15 adantl AsBLimbdayA|sBbdayA|sB=sucbdayABLimsucbdayAB
17 13 16 mtod AsBLimbdayA|sB¬bdayA|sB=sucbdayAB
18 17 neqned AsBLimbdayA|sBbdayA|sBsucbdayAB
19 bdayelon bdayA|sBOn
20 19 onordi OrdbdayA|sB
21 imassrn bdayABranbday
22 bdayrn ranbday=On
23 21 22 sseqtri bdayABOn
24 ssorduni bdayABOnOrdbdayAB
25 23 24 ax-mp OrdbdayAB
26 ordsuc OrdbdayABOrdsucbdayAB
27 25 26 mpbi OrdsucbdayAB
28 ordelssne OrdbdayA|sBOrdsucbdayABbdayA|sBsucbdayABbdayA|sBsucbdayABbdayA|sBsucbdayAB
29 20 27 28 mp2an bdayA|sBsucbdayABbdayA|sBsucbdayABbdayA|sBsucbdayAB
30 2 18 29 sylanbrc AsBLimbdayA|sBbdayA|sBsucbdayAB
31 19 a1i AsBLimbdayA|sBbdayA|sBOn
32 ordsssuc bdayA|sBOnOrdbdayABbdayA|sBbdayABbdayA|sBsucbdayAB
33 31 25 32 sylancl AsBLimbdayA|sBbdayA|sBbdayABbdayA|sBsucbdayAB
34 30 33 mpbird AsBLimbdayA|sBbdayA|sBbdayAB