| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							summo.1 | 
							 |-  F = ( k e. ZZ |-> if ( k e. A , B , 0 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							summo.2 | 
							 |-  ( ( ph /\ k e. A ) -> B e. CC )  | 
						
						
							| 3 | 
							
								
							 | 
							summo.3 | 
							 |-  G = ( n e. NN |-> [_ ( f ` n ) / k ]_ B )  | 
						
						
							| 4 | 
							
								
							 | 
							fveq2 | 
							 |-  ( m = j -> ( ZZ>= ` m ) = ( ZZ>= ` j ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							sseq2d | 
							 |-  ( m = j -> ( A C_ ( ZZ>= ` m ) <-> A C_ ( ZZ>= ` j ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							seqeq1 | 
							 |-  ( m = j -> seq m ( + , F ) = seq j ( + , F ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							breq1d | 
							 |-  ( m = j -> ( seq m ( + , F ) ~~> x <-> seq j ( + , F ) ~~> x ) )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							anbi12d | 
							 |-  ( m = j -> ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) <-> ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							cbvrexvw | 
							 |-  ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) <-> E. j e. ZZ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simplrr | 
							 |-  ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> seq j ( + , F ) ~~> x )  | 
						
						
							| 11 | 
							
								
							 | 
							simplrl | 
							 |-  ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> A C_ ( ZZ>= ` j ) )  | 
						
						
							| 12 | 
							
								
							 | 
							uzssz | 
							 |-  ( ZZ>= ` j ) C_ ZZ  | 
						
						
							| 13 | 
							
								
							 | 
							zssre | 
							 |-  ZZ C_ RR  | 
						
						
							| 14 | 
							
								12 13
							 | 
							sstri | 
							 |-  ( ZZ>= ` j ) C_ RR  | 
						
						
							| 15 | 
							
								11 14
							 | 
							sstrdi | 
							 |-  ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> A C_ RR )  | 
						
						
							| 16 | 
							
								
							 | 
							ltso | 
							 |-  < Or RR  | 
						
						
							| 17 | 
							
								
							 | 
							soss | 
							 |-  ( A C_ RR -> ( < Or RR -> < Or A ) )  | 
						
						
							| 18 | 
							
								15 16 17
							 | 
							mpisyl | 
							 |-  ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> < Or A )  | 
						
						
							| 19 | 
							
								
							 | 
							fzfi | 
							 |-  ( 1 ... m ) e. Fin  | 
						
						
							| 20 | 
							
								
							 | 
							ovex | 
							 |-  ( 1 ... m ) e. _V  | 
						
						
							| 21 | 
							
								20
							 | 
							f1oen | 
							 |-  ( f : ( 1 ... m ) -1-1-onto-> A -> ( 1 ... m ) ~~ A )  | 
						
						
							| 22 | 
							
								21
							 | 
							ad2antll | 
							 |-  ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> ( 1 ... m ) ~~ A )  | 
						
						
							| 23 | 
							
								22
							 | 
							ensymd | 
							 |-  ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> A ~~ ( 1 ... m ) )  | 
						
						
							| 24 | 
							
								
							 | 
							enfii | 
							 |-  ( ( ( 1 ... m ) e. Fin /\ A ~~ ( 1 ... m ) ) -> A e. Fin )  | 
						
						
							| 25 | 
							
								19 23 24
							 | 
							sylancr | 
							 |-  ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> A e. Fin )  | 
						
						
							| 26 | 
							
								
							 | 
							fz1iso | 
							 |-  ( ( < Or A /\ A e. Fin ) -> E. g g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) )  | 
						
						
							| 27 | 
							
								18 25 26
							 | 
							syl2anc | 
							 |-  ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> E. g g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) )  | 
						
						
							| 28 | 
							
								2
							 | 
							ad5ant15 | 
							 |-  ( ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) /\ k e. A ) -> B e. CC )  | 
						
						
							| 29 | 
							
								
							 | 
							eqid | 
							 |-  ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) = ( n e. NN |-> [_ ( g ` n ) / k ]_ B )  | 
						
						
							| 30 | 
							
								
							 | 
							simprll | 
							 |-  ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> m e. NN )  | 
						
						
							| 31 | 
							
								
							 | 
							simpllr | 
							 |-  ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> j e. ZZ )  | 
						
						
							| 32 | 
							
								
							 | 
							simplrl | 
							 |-  ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> A C_ ( ZZ>= ` j ) )  | 
						
						
							| 33 | 
							
								
							 | 
							simprlr | 
							 |-  ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> f : ( 1 ... m ) -1-1-onto-> A )  | 
						
						
							| 34 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) )  | 
						
						
							| 35 | 
							
								1 28 3 29 30 31 32 33 34
							 | 
							summolem2a | 
							 |-  ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> seq j ( + , F ) ~~> ( seq 1 ( + , G ) ` m ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							expr | 
							 |-  ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> ( g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) -> seq j ( + , F ) ~~> ( seq 1 ( + , G ) ` m ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							exlimdv | 
							 |-  ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> ( E. g g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) -> seq j ( + , F ) ~~> ( seq 1 ( + , G ) ` m ) ) )  | 
						
						
							| 38 | 
							
								27 37
							 | 
							mpd | 
							 |-  ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> seq j ( + , F ) ~~> ( seq 1 ( + , G ) ` m ) )  | 
						
						
							| 39 | 
							
								
							 | 
							climuni | 
							 |-  ( ( seq j ( + , F ) ~~> x /\ seq j ( + , F ) ~~> ( seq 1 ( + , G ) ` m ) ) -> x = ( seq 1 ( + , G ) ` m ) )  | 
						
						
							| 40 | 
							
								10 38 39
							 | 
							syl2anc | 
							 |-  ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> x = ( seq 1 ( + , G ) ` m ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							anassrs | 
							 |-  ( ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> x = ( seq 1 ( + , G ) ` m ) )  | 
						
						
							| 42 | 
							
								
							 | 
							eqeq2 | 
							 |-  ( y = ( seq 1 ( + , G ) ` m ) -> ( x = y <-> x = ( seq 1 ( + , G ) ` m ) ) )  | 
						
						
							| 43 | 
							
								41 42
							 | 
							syl5ibrcom | 
							 |-  ( ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> ( y = ( seq 1 ( + , G ) ` m ) -> x = y ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							expimpd | 
							 |-  ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ m e. NN ) -> ( ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) -> x = y ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							exlimdv | 
							 |-  ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ m e. NN ) -> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) -> x = y ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							rexlimdva | 
							 |-  ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) -> x = y ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							r19.29an | 
							 |-  ( ( ph /\ E. j e. ZZ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) -> x = y ) )  | 
						
						
							| 48 | 
							
								9 47
							 | 
							sylan2b | 
							 |-  ( ( ph /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) -> x = y ) )  |