| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							summo.1 | 
							⊢ 𝐹  =  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  0 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							summo.2 | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ )  | 
						
						
							| 3 | 
							
								
							 | 
							summo.3 | 
							⊢ 𝐺  =  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 )  | 
						
						
							| 4 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑚  =  𝑗  →  ( ℤ≥ ‘ 𝑚 )  =  ( ℤ≥ ‘ 𝑗 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							sseq2d | 
							⊢ ( 𝑚  =  𝑗  →  ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ↔  𝐴  ⊆  ( ℤ≥ ‘ 𝑗 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							seqeq1 | 
							⊢ ( 𝑚  =  𝑗  →  seq 𝑚 (  +  ,  𝐹 )  =  seq 𝑗 (  +  ,  𝐹 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							breq1d | 
							⊢ ( 𝑚  =  𝑗  →  ( seq 𝑚 (  +  ,  𝐹 )  ⇝  𝑥  ↔  seq 𝑗 (  +  ,  𝐹 )  ⇝  𝑥 ) )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							anbi12d | 
							⊢ ( 𝑚  =  𝑗  →  ( ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  seq 𝑚 (  +  ,  𝐹 )  ⇝  𝑥 )  ↔  ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑗 )  ∧  seq 𝑗 (  +  ,  𝐹 )  ⇝  𝑥 ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							cbvrexvw | 
							⊢ ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  seq 𝑚 (  +  ,  𝐹 )  ⇝  𝑥 )  ↔  ∃ 𝑗  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑗 )  ∧  seq 𝑗 (  +  ,  𝐹 )  ⇝  𝑥 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simplrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑗 )  ∧  seq 𝑗 (  +  ,  𝐹 )  ⇝  𝑥 ) )  ∧  ( 𝑚  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) )  →  seq 𝑗 (  +  ,  𝐹 )  ⇝  𝑥 )  | 
						
						
							| 11 | 
							
								
							 | 
							simplrl | 
							⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑗 )  ∧  seq 𝑗 (  +  ,  𝐹 )  ⇝  𝑥 ) )  ∧  ( 𝑚  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) )  →  𝐴  ⊆  ( ℤ≥ ‘ 𝑗 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							uzssz | 
							⊢ ( ℤ≥ ‘ 𝑗 )  ⊆  ℤ  | 
						
						
							| 13 | 
							
								
							 | 
							zssre | 
							⊢ ℤ  ⊆  ℝ  | 
						
						
							| 14 | 
							
								12 13
							 | 
							sstri | 
							⊢ ( ℤ≥ ‘ 𝑗 )  ⊆  ℝ  | 
						
						
							| 15 | 
							
								11 14
							 | 
							sstrdi | 
							⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑗 )  ∧  seq 𝑗 (  +  ,  𝐹 )  ⇝  𝑥 ) )  ∧  ( 𝑚  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) )  →  𝐴  ⊆  ℝ )  | 
						
						
							| 16 | 
							
								
							 | 
							ltso | 
							⊢  <   Or  ℝ  | 
						
						
							| 17 | 
							
								
							 | 
							soss | 
							⊢ ( 𝐴  ⊆  ℝ  →  (  <   Or  ℝ  →   <   Or  𝐴 ) )  | 
						
						
							| 18 | 
							
								15 16 17
							 | 
							mpisyl | 
							⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑗 )  ∧  seq 𝑗 (  +  ,  𝐹 )  ⇝  𝑥 ) )  ∧  ( 𝑚  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) )  →   <   Or  𝐴 )  | 
						
						
							| 19 | 
							
								
							 | 
							fzfi | 
							⊢ ( 1 ... 𝑚 )  ∈  Fin  | 
						
						
							| 20 | 
							
								
							 | 
							ovex | 
							⊢ ( 1 ... 𝑚 )  ∈  V  | 
						
						
							| 21 | 
							
								20
							 | 
							f1oen | 
							⊢ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  →  ( 1 ... 𝑚 )  ≈  𝐴 )  | 
						
						
							| 22 | 
							
								21
							 | 
							ad2antll | 
							⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑗 )  ∧  seq 𝑗 (  +  ,  𝐹 )  ⇝  𝑥 ) )  ∧  ( 𝑚  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) )  →  ( 1 ... 𝑚 )  ≈  𝐴 )  | 
						
						
							| 23 | 
							
								22
							 | 
							ensymd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑗 )  ∧  seq 𝑗 (  +  ,  𝐹 )  ⇝  𝑥 ) )  ∧  ( 𝑚  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) )  →  𝐴  ≈  ( 1 ... 𝑚 ) )  | 
						
						
							| 24 | 
							
								
							 | 
							enfii | 
							⊢ ( ( ( 1 ... 𝑚 )  ∈  Fin  ∧  𝐴  ≈  ( 1 ... 𝑚 ) )  →  𝐴  ∈  Fin )  | 
						
						
							| 25 | 
							
								19 23 24
							 | 
							sylancr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑗 )  ∧  seq 𝑗 (  +  ,  𝐹 )  ⇝  𝑥 ) )  ∧  ( 𝑚  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) )  →  𝐴  ∈  Fin )  | 
						
						
							| 26 | 
							
								
							 | 
							fz1iso | 
							⊢ ( (  <   Or  𝐴  ∧  𝐴  ∈  Fin )  →  ∃ 𝑔 𝑔  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ,  𝐴 ) )  | 
						
						
							| 27 | 
							
								18 25 26
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑗 )  ∧  seq 𝑗 (  +  ,  𝐹 )  ⇝  𝑥 ) )  ∧  ( 𝑚  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) )  →  ∃ 𝑔 𝑔  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ,  𝐴 ) )  | 
						
						
							| 28 | 
							
								2
							 | 
							ad5ant15 | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑗 )  ∧  seq 𝑗 (  +  ,  𝐹 )  ⇝  𝑥 ) )  ∧  ( ( 𝑚  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 )  ∧  𝑔  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ,  𝐴 ) ) )  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ )  | 
						
						
							| 29 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑔 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 )  =  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑔 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 )  | 
						
						
							| 30 | 
							
								
							 | 
							simprll | 
							⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑗 )  ∧  seq 𝑗 (  +  ,  𝐹 )  ⇝  𝑥 ) )  ∧  ( ( 𝑚  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 )  ∧  𝑔  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ,  𝐴 ) ) )  →  𝑚  ∈  ℕ )  | 
						
						
							| 31 | 
							
								
							 | 
							simpllr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑗 )  ∧  seq 𝑗 (  +  ,  𝐹 )  ⇝  𝑥 ) )  ∧  ( ( 𝑚  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 )  ∧  𝑔  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ,  𝐴 ) ) )  →  𝑗  ∈  ℤ )  | 
						
						
							| 32 | 
							
								
							 | 
							simplrl | 
							⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑗 )  ∧  seq 𝑗 (  +  ,  𝐹 )  ⇝  𝑥 ) )  ∧  ( ( 𝑚  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 )  ∧  𝑔  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ,  𝐴 ) ) )  →  𝐴  ⊆  ( ℤ≥ ‘ 𝑗 ) )  | 
						
						
							| 33 | 
							
								
							 | 
							simprlr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑗 )  ∧  seq 𝑗 (  +  ,  𝐹 )  ⇝  𝑥 ) )  ∧  ( ( 𝑚  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 )  ∧  𝑔  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ,  𝐴 ) ) )  →  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 )  | 
						
						
							| 34 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑗 )  ∧  seq 𝑗 (  +  ,  𝐹 )  ⇝  𝑥 ) )  ∧  ( ( 𝑚  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 )  ∧  𝑔  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ,  𝐴 ) ) )  →  𝑔  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ,  𝐴 ) )  | 
						
						
							| 35 | 
							
								1 28 3 29 30 31 32 33 34
							 | 
							summolem2a | 
							⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑗 )  ∧  seq 𝑗 (  +  ,  𝐹 )  ⇝  𝑥 ) )  ∧  ( ( 𝑚  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 )  ∧  𝑔  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ,  𝐴 ) ) )  →  seq 𝑗 (  +  ,  𝐹 )  ⇝  ( seq 1 (  +  ,  𝐺 ) ‘ 𝑚 ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							expr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑗 )  ∧  seq 𝑗 (  +  ,  𝐹 )  ⇝  𝑥 ) )  ∧  ( 𝑚  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) )  →  ( 𝑔  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ,  𝐴 )  →  seq 𝑗 (  +  ,  𝐹 )  ⇝  ( seq 1 (  +  ,  𝐺 ) ‘ 𝑚 ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							exlimdv | 
							⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑗 )  ∧  seq 𝑗 (  +  ,  𝐹 )  ⇝  𝑥 ) )  ∧  ( 𝑚  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) )  →  ( ∃ 𝑔 𝑔  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝐴 ) ) ,  𝐴 )  →  seq 𝑗 (  +  ,  𝐹 )  ⇝  ( seq 1 (  +  ,  𝐺 ) ‘ 𝑚 ) ) )  | 
						
						
							| 38 | 
							
								27 37
							 | 
							mpd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑗 )  ∧  seq 𝑗 (  +  ,  𝐹 )  ⇝  𝑥 ) )  ∧  ( 𝑚  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) )  →  seq 𝑗 (  +  ,  𝐹 )  ⇝  ( seq 1 (  +  ,  𝐺 ) ‘ 𝑚 ) )  | 
						
						
							| 39 | 
							
								
							 | 
							climuni | 
							⊢ ( ( seq 𝑗 (  +  ,  𝐹 )  ⇝  𝑥  ∧  seq 𝑗 (  +  ,  𝐹 )  ⇝  ( seq 1 (  +  ,  𝐺 ) ‘ 𝑚 ) )  →  𝑥  =  ( seq 1 (  +  ,  𝐺 ) ‘ 𝑚 ) )  | 
						
						
							| 40 | 
							
								10 38 39
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑗 )  ∧  seq 𝑗 (  +  ,  𝐹 )  ⇝  𝑥 ) )  ∧  ( 𝑚  ∈  ℕ  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) )  →  𝑥  =  ( seq 1 (  +  ,  𝐺 ) ‘ 𝑚 ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							anassrs | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑗 )  ∧  seq 𝑗 (  +  ,  𝐹 )  ⇝  𝑥 ) )  ∧  𝑚  ∈  ℕ )  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 )  →  𝑥  =  ( seq 1 (  +  ,  𝐺 ) ‘ 𝑚 ) )  | 
						
						
							| 42 | 
							
								
							 | 
							eqeq2 | 
							⊢ ( 𝑦  =  ( seq 1 (  +  ,  𝐺 ) ‘ 𝑚 )  →  ( 𝑥  =  𝑦  ↔  𝑥  =  ( seq 1 (  +  ,  𝐺 ) ‘ 𝑚 ) ) )  | 
						
						
							| 43 | 
							
								41 42
							 | 
							syl5ibrcom | 
							⊢ ( ( ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑗 )  ∧  seq 𝑗 (  +  ,  𝐹 )  ⇝  𝑥 ) )  ∧  𝑚  ∈  ℕ )  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 )  →  ( 𝑦  =  ( seq 1 (  +  ,  𝐺 ) ‘ 𝑚 )  →  𝑥  =  𝑦 ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							expimpd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑗 )  ∧  seq 𝑗 (  +  ,  𝐹 )  ⇝  𝑥 ) )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑦  =  ( seq 1 (  +  ,  𝐺 ) ‘ 𝑚 ) )  →  𝑥  =  𝑦 ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							exlimdv | 
							⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑗 )  ∧  seq 𝑗 (  +  ,  𝐹 )  ⇝  𝑥 ) )  ∧  𝑚  ∈  ℕ )  →  ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑦  =  ( seq 1 (  +  ,  𝐺 ) ‘ 𝑚 ) )  →  𝑥  =  𝑦 ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							rexlimdva | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ℤ )  ∧  ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑗 )  ∧  seq 𝑗 (  +  ,  𝐹 )  ⇝  𝑥 ) )  →  ( ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑦  =  ( seq 1 (  +  ,  𝐺 ) ‘ 𝑚 ) )  →  𝑥  =  𝑦 ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							r19.29an | 
							⊢ ( ( 𝜑  ∧  ∃ 𝑗  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑗 )  ∧  seq 𝑗 (  +  ,  𝐹 )  ⇝  𝑥 ) )  →  ( ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑦  =  ( seq 1 (  +  ,  𝐺 ) ‘ 𝑚 ) )  →  𝑥  =  𝑦 ) )  | 
						
						
							| 48 | 
							
								9 47
							 | 
							sylan2b | 
							⊢ ( ( 𝜑  ∧  ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  seq 𝑚 (  +  ,  𝐹 )  ⇝  𝑥 ) )  →  ( ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑦  =  ( seq 1 (  +  ,  𝐺 ) ‘ 𝑚 ) )  →  𝑥  =  𝑦 ) )  |