| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elioore |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> A e. RR ) |
| 2 |
1
|
adantr |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> A e. RR ) |
| 3 |
2
|
renegcld |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> -u A e. RR ) |
| 4 |
1
|
lt0neg1d |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( A < 0 <-> 0 < -u A ) ) |
| 5 |
4
|
biimpa |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> 0 < -u A ) |
| 6 |
|
eliooord |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( -u ( _pi / 2 ) < A /\ A < ( _pi / 2 ) ) ) |
| 7 |
6
|
simpld |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> -u ( _pi / 2 ) < A ) |
| 8 |
7
|
adantr |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> -u ( _pi / 2 ) < A ) |
| 9 |
|
halfpire |
|- ( _pi / 2 ) e. RR |
| 10 |
|
ltnegcon1 |
|- ( ( ( _pi / 2 ) e. RR /\ A e. RR ) -> ( -u ( _pi / 2 ) < A <-> -u A < ( _pi / 2 ) ) ) |
| 11 |
9 2 10
|
sylancr |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( -u ( _pi / 2 ) < A <-> -u A < ( _pi / 2 ) ) ) |
| 12 |
8 11
|
mpbid |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> -u A < ( _pi / 2 ) ) |
| 13 |
|
0xr |
|- 0 e. RR* |
| 14 |
9
|
rexri |
|- ( _pi / 2 ) e. RR* |
| 15 |
|
elioo2 |
|- ( ( 0 e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( -u A e. ( 0 (,) ( _pi / 2 ) ) <-> ( -u A e. RR /\ 0 < -u A /\ -u A < ( _pi / 2 ) ) ) ) |
| 16 |
13 14 15
|
mp2an |
|- ( -u A e. ( 0 (,) ( _pi / 2 ) ) <-> ( -u A e. RR /\ 0 < -u A /\ -u A < ( _pi / 2 ) ) ) |
| 17 |
3 5 12 16
|
syl3anbrc |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> -u A e. ( 0 (,) ( _pi / 2 ) ) ) |
| 18 |
|
sincosq1sgn |
|- ( -u A e. ( 0 (,) ( _pi / 2 ) ) -> ( 0 < ( sin ` -u A ) /\ 0 < ( cos ` -u A ) ) ) |
| 19 |
17 18
|
syl |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( 0 < ( sin ` -u A ) /\ 0 < ( cos ` -u A ) ) ) |
| 20 |
19
|
simprd |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> 0 < ( cos ` -u A ) ) |
| 21 |
20
|
gt0ne0d |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( cos ` -u A ) =/= 0 ) |
| 22 |
3 21
|
retancld |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( tan ` -u A ) e. RR ) |
| 23 |
|
tangtx |
|- ( -u A e. ( 0 (,) ( _pi / 2 ) ) -> -u A < ( tan ` -u A ) ) |
| 24 |
17 23
|
syl |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> -u A < ( tan ` -u A ) ) |
| 25 |
3 22 24
|
ltled |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> -u A <_ ( tan ` -u A ) ) |
| 26 |
|
0re |
|- 0 e. RR |
| 27 |
|
ltle |
|- ( ( A e. RR /\ 0 e. RR ) -> ( A < 0 -> A <_ 0 ) ) |
| 28 |
1 26 27
|
sylancl |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( A < 0 -> A <_ 0 ) ) |
| 29 |
28
|
imp |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> A <_ 0 ) |
| 30 |
2 29
|
absnidd |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( abs ` A ) = -u A ) |
| 31 |
1
|
recnd |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> A e. CC ) |
| 32 |
31
|
adantr |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> A e. CC ) |
| 33 |
32
|
negnegd |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> -u -u A = A ) |
| 34 |
33
|
fveq2d |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( tan ` -u -u A ) = ( tan ` A ) ) |
| 35 |
32
|
negcld |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> -u A e. CC ) |
| 36 |
|
tanneg |
|- ( ( -u A e. CC /\ ( cos ` -u A ) =/= 0 ) -> ( tan ` -u -u A ) = -u ( tan ` -u A ) ) |
| 37 |
35 21 36
|
syl2anc |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( tan ` -u -u A ) = -u ( tan ` -u A ) ) |
| 38 |
34 37
|
eqtr3d |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( tan ` A ) = -u ( tan ` -u A ) ) |
| 39 |
38
|
fveq2d |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( abs ` ( tan ` A ) ) = ( abs ` -u ( tan ` -u A ) ) ) |
| 40 |
22
|
recnd |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( tan ` -u A ) e. CC ) |
| 41 |
40
|
absnegd |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( abs ` -u ( tan ` -u A ) ) = ( abs ` ( tan ` -u A ) ) ) |
| 42 |
|
0red |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> 0 e. RR ) |
| 43 |
|
ltle |
|- ( ( 0 e. RR /\ -u A e. RR ) -> ( 0 < -u A -> 0 <_ -u A ) ) |
| 44 |
26 3 43
|
sylancr |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( 0 < -u A -> 0 <_ -u A ) ) |
| 45 |
5 44
|
mpd |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> 0 <_ -u A ) |
| 46 |
42 3 22 45 25
|
letrd |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> 0 <_ ( tan ` -u A ) ) |
| 47 |
22 46
|
absidd |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( abs ` ( tan ` -u A ) ) = ( tan ` -u A ) ) |
| 48 |
39 41 47
|
3eqtrd |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( abs ` ( tan ` A ) ) = ( tan ` -u A ) ) |
| 49 |
25 30 48
|
3brtr4d |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( abs ` A ) <_ ( abs ` ( tan ` A ) ) ) |
| 50 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
| 51 |
50 26
|
eqeltri |
|- ( abs ` 0 ) e. RR |
| 52 |
51
|
leidi |
|- ( abs ` 0 ) <_ ( abs ` 0 ) |
| 53 |
52
|
a1i |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A = 0 ) -> ( abs ` 0 ) <_ ( abs ` 0 ) ) |
| 54 |
|
simpr |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A = 0 ) -> A = 0 ) |
| 55 |
54
|
fveq2d |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A = 0 ) -> ( abs ` A ) = ( abs ` 0 ) ) |
| 56 |
54
|
fveq2d |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A = 0 ) -> ( tan ` A ) = ( tan ` 0 ) ) |
| 57 |
|
tan0 |
|- ( tan ` 0 ) = 0 |
| 58 |
56 57
|
eqtrdi |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A = 0 ) -> ( tan ` A ) = 0 ) |
| 59 |
58
|
fveq2d |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A = 0 ) -> ( abs ` ( tan ` A ) ) = ( abs ` 0 ) ) |
| 60 |
53 55 59
|
3brtr4d |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A = 0 ) -> ( abs ` A ) <_ ( abs ` ( tan ` A ) ) ) |
| 61 |
1
|
adantr |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> A e. RR ) |
| 62 |
|
simpr |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> 0 < A ) |
| 63 |
6
|
simprd |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> A < ( _pi / 2 ) ) |
| 64 |
63
|
adantr |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> A < ( _pi / 2 ) ) |
| 65 |
|
elioo2 |
|- ( ( 0 e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( A e. ( 0 (,) ( _pi / 2 ) ) <-> ( A e. RR /\ 0 < A /\ A < ( _pi / 2 ) ) ) ) |
| 66 |
13 14 65
|
mp2an |
|- ( A e. ( 0 (,) ( _pi / 2 ) ) <-> ( A e. RR /\ 0 < A /\ A < ( _pi / 2 ) ) ) |
| 67 |
61 62 64 66
|
syl3anbrc |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> A e. ( 0 (,) ( _pi / 2 ) ) ) |
| 68 |
|
sincosq1sgn |
|- ( A e. ( 0 (,) ( _pi / 2 ) ) -> ( 0 < ( sin ` A ) /\ 0 < ( cos ` A ) ) ) |
| 69 |
67 68
|
syl |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> ( 0 < ( sin ` A ) /\ 0 < ( cos ` A ) ) ) |
| 70 |
69
|
simprd |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> 0 < ( cos ` A ) ) |
| 71 |
70
|
gt0ne0d |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> ( cos ` A ) =/= 0 ) |
| 72 |
61 71
|
retancld |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> ( tan ` A ) e. RR ) |
| 73 |
|
tangtx |
|- ( A e. ( 0 (,) ( _pi / 2 ) ) -> A < ( tan ` A ) ) |
| 74 |
67 73
|
syl |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> A < ( tan ` A ) ) |
| 75 |
61 72 74
|
ltled |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> A <_ ( tan ` A ) ) |
| 76 |
|
ltle |
|- ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A -> 0 <_ A ) ) |
| 77 |
26 1 76
|
sylancr |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( 0 < A -> 0 <_ A ) ) |
| 78 |
77
|
imp |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> 0 <_ A ) |
| 79 |
61 78
|
absidd |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> ( abs ` A ) = A ) |
| 80 |
|
0red |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> 0 e. RR ) |
| 81 |
80 61 72 78 75
|
letrd |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> 0 <_ ( tan ` A ) ) |
| 82 |
72 81
|
absidd |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> ( abs ` ( tan ` A ) ) = ( tan ` A ) ) |
| 83 |
75 79 82
|
3brtr4d |
|- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> ( abs ` A ) <_ ( abs ` ( tan ` A ) ) ) |
| 84 |
|
lttri4 |
|- ( ( A e. RR /\ 0 e. RR ) -> ( A < 0 \/ A = 0 \/ 0 < A ) ) |
| 85 |
1 26 84
|
sylancl |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( A < 0 \/ A = 0 \/ 0 < A ) ) |
| 86 |
49 60 83 85
|
mpjao3dan |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( abs ` A ) <_ ( abs ` ( tan ` A ) ) ) |