| Step | Hyp | Ref | Expression | 
						
							| 1 |  | trlval3.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | trlval3.j |  |-  .\/ = ( join ` K ) | 
						
							| 3 |  | trlval3.m |  |-  ./\ = ( meet ` K ) | 
						
							| 4 |  | trlval3.a |  |-  A = ( Atoms ` K ) | 
						
							| 5 |  | trlval3.h |  |-  H = ( LHyp ` K ) | 
						
							| 6 |  | trlval3.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 7 |  | trlval3.r |  |-  R = ( ( trL ` K ) ` W ) | 
						
							| 8 |  | simpl1 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) = P ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 9 |  | simpl31 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) = P ) -> ( P e. A /\ -. P .<_ W ) ) | 
						
							| 10 |  | simpl2 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) = P ) -> F e. T ) | 
						
							| 11 |  | simpr |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) = P ) -> ( F ` P ) = P ) | 
						
							| 12 |  | eqid |  |-  ( 0. ` K ) = ( 0. ` K ) | 
						
							| 13 | 1 12 4 5 6 7 | trl0 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( F e. T /\ ( F ` P ) = P ) ) -> ( R ` F ) = ( 0. ` K ) ) | 
						
							| 14 | 8 9 10 11 13 | syl112anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) = P ) -> ( R ` F ) = ( 0. ` K ) ) | 
						
							| 15 |  | simpl33 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) = P ) -> ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) | 
						
							| 16 |  | simpl1l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) = P ) -> K e. HL ) | 
						
							| 17 |  | hlatl |  |-  ( K e. HL -> K e. AtLat ) | 
						
							| 18 | 16 17 | syl |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) = P ) -> K e. AtLat ) | 
						
							| 19 | 11 | oveq2d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) = P ) -> ( P .\/ ( F ` P ) ) = ( P .\/ P ) ) | 
						
							| 20 |  | simp31l |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) -> P e. A ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) = P ) -> P e. A ) | 
						
							| 22 | 2 4 | hlatjidm |  |-  ( ( K e. HL /\ P e. A ) -> ( P .\/ P ) = P ) | 
						
							| 23 | 16 21 22 | syl2anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) = P ) -> ( P .\/ P ) = P ) | 
						
							| 24 | 19 23 | eqtrd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) = P ) -> ( P .\/ ( F ` P ) ) = P ) | 
						
							| 25 | 24 21 | eqeltrd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) = P ) -> ( P .\/ ( F ` P ) ) e. A ) | 
						
							| 26 |  | simp1 |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 27 |  | simp2 |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) -> F e. T ) | 
						
							| 28 |  | simp31 |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) -> ( P e. A /\ -. P .<_ W ) ) | 
						
							| 29 |  | simp32 |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) | 
						
							| 30 | 1 4 5 6 | ltrn2ateq |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) ) -> ( ( F ` P ) = P <-> ( F ` Q ) = Q ) ) | 
						
							| 31 | 26 27 28 29 30 | syl13anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) -> ( ( F ` P ) = P <-> ( F ` Q ) = Q ) ) | 
						
							| 32 | 31 | biimpa |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) = P ) -> ( F ` Q ) = Q ) | 
						
							| 33 | 32 | oveq2d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) = P ) -> ( Q .\/ ( F ` Q ) ) = ( Q .\/ Q ) ) | 
						
							| 34 |  | simp32l |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) -> Q e. A ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) = P ) -> Q e. A ) | 
						
							| 36 | 2 4 | hlatjidm |  |-  ( ( K e. HL /\ Q e. A ) -> ( Q .\/ Q ) = Q ) | 
						
							| 37 | 16 35 36 | syl2anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) = P ) -> ( Q .\/ Q ) = Q ) | 
						
							| 38 | 33 37 | eqtrd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) = P ) -> ( Q .\/ ( F ` Q ) ) = Q ) | 
						
							| 39 | 38 35 | eqeltrd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) = P ) -> ( Q .\/ ( F ` Q ) ) e. A ) | 
						
							| 40 | 3 12 4 | atnem0 |  |-  ( ( K e. AtLat /\ ( P .\/ ( F ` P ) ) e. A /\ ( Q .\/ ( F ` Q ) ) e. A ) -> ( ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) <-> ( ( P .\/ ( F ` P ) ) ./\ ( Q .\/ ( F ` Q ) ) ) = ( 0. ` K ) ) ) | 
						
							| 41 | 18 25 39 40 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) = P ) -> ( ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) <-> ( ( P .\/ ( F ` P ) ) ./\ ( Q .\/ ( F ` Q ) ) ) = ( 0. ` K ) ) ) | 
						
							| 42 | 15 41 | mpbid |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) = P ) -> ( ( P .\/ ( F ` P ) ) ./\ ( Q .\/ ( F ` Q ) ) ) = ( 0. ` K ) ) | 
						
							| 43 | 14 42 | eqtr4d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) = P ) -> ( R ` F ) = ( ( P .\/ ( F ` P ) ) ./\ ( Q .\/ ( F ` Q ) ) ) ) | 
						
							| 44 |  | simpl1 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 45 |  | simpl2 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> F e. T ) | 
						
							| 46 |  | simpl31 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> ( P e. A /\ -. P .<_ W ) ) | 
						
							| 47 | 1 2 3 4 5 6 7 | trlval2 |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( R ` F ) = ( ( P .\/ ( F ` P ) ) ./\ W ) ) | 
						
							| 48 | 44 45 46 47 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> ( R ` F ) = ( ( P .\/ ( F ` P ) ) ./\ W ) ) | 
						
							| 49 |  | simpl1l |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> K e. HL ) | 
						
							| 50 | 49 | hllatd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> K e. Lat ) | 
						
							| 51 | 20 | adantr |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> P e. A ) | 
						
							| 52 | 1 4 5 6 | ltrnat |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ P e. A ) -> ( F ` P ) e. A ) | 
						
							| 53 | 44 45 51 52 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> ( F ` P ) e. A ) | 
						
							| 54 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 55 | 54 2 4 | hlatjcl |  |-  ( ( K e. HL /\ P e. A /\ ( F ` P ) e. A ) -> ( P .\/ ( F ` P ) ) e. ( Base ` K ) ) | 
						
							| 56 | 49 51 53 55 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> ( P .\/ ( F ` P ) ) e. ( Base ` K ) ) | 
						
							| 57 |  | simpl1r |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> W e. H ) | 
						
							| 58 | 54 5 | lhpbase |  |-  ( W e. H -> W e. ( Base ` K ) ) | 
						
							| 59 | 57 58 | syl |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> W e. ( Base ` K ) ) | 
						
							| 60 | 54 1 3 | latmle1 |  |-  ( ( K e. Lat /\ ( P .\/ ( F ` P ) ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ ( F ` P ) ) ./\ W ) .<_ ( P .\/ ( F ` P ) ) ) | 
						
							| 61 | 50 56 59 60 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> ( ( P .\/ ( F ` P ) ) ./\ W ) .<_ ( P .\/ ( F ` P ) ) ) | 
						
							| 62 | 48 61 | eqbrtrd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> ( R ` F ) .<_ ( P .\/ ( F ` P ) ) ) | 
						
							| 63 |  | simpl32 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> ( Q e. A /\ -. Q .<_ W ) ) | 
						
							| 64 | 1 2 3 4 5 6 7 | trlval2 |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( R ` F ) = ( ( Q .\/ ( F ` Q ) ) ./\ W ) ) | 
						
							| 65 | 44 45 63 64 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> ( R ` F ) = ( ( Q .\/ ( F ` Q ) ) ./\ W ) ) | 
						
							| 66 | 34 | adantr |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> Q e. A ) | 
						
							| 67 | 1 4 5 6 | ltrnat |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ Q e. A ) -> ( F ` Q ) e. A ) | 
						
							| 68 | 44 45 66 67 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> ( F ` Q ) e. A ) | 
						
							| 69 | 54 2 4 | hlatjcl |  |-  ( ( K e. HL /\ Q e. A /\ ( F ` Q ) e. A ) -> ( Q .\/ ( F ` Q ) ) e. ( Base ` K ) ) | 
						
							| 70 | 49 66 68 69 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> ( Q .\/ ( F ` Q ) ) e. ( Base ` K ) ) | 
						
							| 71 | 54 1 3 | latmle1 |  |-  ( ( K e. Lat /\ ( Q .\/ ( F ` Q ) ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( Q .\/ ( F ` Q ) ) ./\ W ) .<_ ( Q .\/ ( F ` Q ) ) ) | 
						
							| 72 | 50 70 59 71 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> ( ( Q .\/ ( F ` Q ) ) ./\ W ) .<_ ( Q .\/ ( F ` Q ) ) ) | 
						
							| 73 | 65 72 | eqbrtrd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> ( R ` F ) .<_ ( Q .\/ ( F ` Q ) ) ) | 
						
							| 74 | 54 5 6 7 | trlcl |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` F ) e. ( Base ` K ) ) | 
						
							| 75 | 44 45 74 | syl2anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> ( R ` F ) e. ( Base ` K ) ) | 
						
							| 76 | 54 1 3 | latlem12 |  |-  ( ( K e. Lat /\ ( ( R ` F ) e. ( Base ` K ) /\ ( P .\/ ( F ` P ) ) e. ( Base ` K ) /\ ( Q .\/ ( F ` Q ) ) e. ( Base ` K ) ) ) -> ( ( ( R ` F ) .<_ ( P .\/ ( F ` P ) ) /\ ( R ` F ) .<_ ( Q .\/ ( F ` Q ) ) ) <-> ( R ` F ) .<_ ( ( P .\/ ( F ` P ) ) ./\ ( Q .\/ ( F ` Q ) ) ) ) ) | 
						
							| 77 | 50 75 56 70 76 | syl13anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> ( ( ( R ` F ) .<_ ( P .\/ ( F ` P ) ) /\ ( R ` F ) .<_ ( Q .\/ ( F ` Q ) ) ) <-> ( R ` F ) .<_ ( ( P .\/ ( F ` P ) ) ./\ ( Q .\/ ( F ` Q ) ) ) ) ) | 
						
							| 78 | 62 73 77 | mpbi2and |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> ( R ` F ) .<_ ( ( P .\/ ( F ` P ) ) ./\ ( Q .\/ ( F ` Q ) ) ) ) | 
						
							| 79 | 49 17 | syl |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> K e. AtLat ) | 
						
							| 80 |  | simpr |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> ( F ` P ) =/= P ) | 
						
							| 81 | 1 4 5 6 7 | trlat |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( F e. T /\ ( F ` P ) =/= P ) ) -> ( R ` F ) e. A ) | 
						
							| 82 | 44 46 45 80 81 | syl112anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> ( R ` F ) e. A ) | 
						
							| 83 | 54 3 | latmcl |  |-  ( ( K e. Lat /\ ( P .\/ ( F ` P ) ) e. ( Base ` K ) /\ ( Q .\/ ( F ` Q ) ) e. ( Base ` K ) ) -> ( ( P .\/ ( F ` P ) ) ./\ ( Q .\/ ( F ` Q ) ) ) e. ( Base ` K ) ) | 
						
							| 84 | 50 56 70 83 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> ( ( P .\/ ( F ` P ) ) ./\ ( Q .\/ ( F ` Q ) ) ) e. ( Base ` K ) ) | 
						
							| 85 | 54 1 12 4 | atlen0 |  |-  ( ( ( K e. AtLat /\ ( ( P .\/ ( F ` P ) ) ./\ ( Q .\/ ( F ` Q ) ) ) e. ( Base ` K ) /\ ( R ` F ) e. A ) /\ ( R ` F ) .<_ ( ( P .\/ ( F ` P ) ) ./\ ( Q .\/ ( F ` Q ) ) ) ) -> ( ( P .\/ ( F ` P ) ) ./\ ( Q .\/ ( F ` Q ) ) ) =/= ( 0. ` K ) ) | 
						
							| 86 | 79 84 82 78 85 | syl31anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> ( ( P .\/ ( F ` P ) ) ./\ ( Q .\/ ( F ` Q ) ) ) =/= ( 0. ` K ) ) | 
						
							| 87 | 86 | neneqd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> -. ( ( P .\/ ( F ` P ) ) ./\ ( Q .\/ ( F ` Q ) ) ) = ( 0. ` K ) ) | 
						
							| 88 |  | simpl33 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) | 
						
							| 89 | 2 3 12 4 | 2atmat0 |  |-  ( ( ( K e. HL /\ P e. A /\ ( F ` P ) e. A ) /\ ( Q e. A /\ ( F ` Q ) e. A /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) -> ( ( ( P .\/ ( F ` P ) ) ./\ ( Q .\/ ( F ` Q ) ) ) e. A \/ ( ( P .\/ ( F ` P ) ) ./\ ( Q .\/ ( F ` Q ) ) ) = ( 0. ` K ) ) ) | 
						
							| 90 | 49 51 53 66 68 88 89 | syl33anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> ( ( ( P .\/ ( F ` P ) ) ./\ ( Q .\/ ( F ` Q ) ) ) e. A \/ ( ( P .\/ ( F ` P ) ) ./\ ( Q .\/ ( F ` Q ) ) ) = ( 0. ` K ) ) ) | 
						
							| 91 | 90 | ord |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> ( -. ( ( P .\/ ( F ` P ) ) ./\ ( Q .\/ ( F ` Q ) ) ) e. A -> ( ( P .\/ ( F ` P ) ) ./\ ( Q .\/ ( F ` Q ) ) ) = ( 0. ` K ) ) ) | 
						
							| 92 | 87 91 | mt3d |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> ( ( P .\/ ( F ` P ) ) ./\ ( Q .\/ ( F ` Q ) ) ) e. A ) | 
						
							| 93 | 1 4 | atcmp |  |-  ( ( K e. AtLat /\ ( R ` F ) e. A /\ ( ( P .\/ ( F ` P ) ) ./\ ( Q .\/ ( F ` Q ) ) ) e. A ) -> ( ( R ` F ) .<_ ( ( P .\/ ( F ` P ) ) ./\ ( Q .\/ ( F ` Q ) ) ) <-> ( R ` F ) = ( ( P .\/ ( F ` P ) ) ./\ ( Q .\/ ( F ` Q ) ) ) ) ) | 
						
							| 94 | 79 82 92 93 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> ( ( R ` F ) .<_ ( ( P .\/ ( F ` P ) ) ./\ ( Q .\/ ( F ` Q ) ) ) <-> ( R ` F ) = ( ( P .\/ ( F ` P ) ) ./\ ( Q .\/ ( F ` Q ) ) ) ) ) | 
						
							| 95 | 78 94 | mpbid |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) /\ ( F ` P ) =/= P ) -> ( R ` F ) = ( ( P .\/ ( F ` P ) ) ./\ ( Q .\/ ( F ` Q ) ) ) ) | 
						
							| 96 | 43 95 | pm2.61dane |  |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P .\/ ( F ` P ) ) =/= ( Q .\/ ( F ` Q ) ) ) ) -> ( R ` F ) = ( ( P .\/ ( F ` P ) ) ./\ ( Q .\/ ( F ` Q ) ) ) ) |