Step |
Hyp |
Ref |
Expression |
1 |
|
ushrisomgr.v |
|- V = ( Vtx ` G ) |
2 |
|
ushrisomgr.e |
|- E = ( Edg ` G ) |
3 |
|
ushrisomgr.s |
|- H = <. V , ( _I |` E ) >. |
4 |
1
|
fvexi |
|- V e. _V |
5 |
4
|
a1i |
|- ( G e. USHGraph -> V e. _V ) |
6 |
5
|
resiexd |
|- ( G e. USHGraph -> ( _I |` V ) e. _V ) |
7 |
|
f1oi |
|- ( _I |` V ) : V -1-1-onto-> V |
8 |
7
|
a1i |
|- ( G e. USHGraph -> ( _I |` V ) : V -1-1-onto-> V ) |
9 |
3
|
fveq2i |
|- ( Vtx ` H ) = ( Vtx ` <. V , ( _I |` E ) >. ) |
10 |
2
|
fvexi |
|- E e. _V |
11 |
|
id |
|- ( E e. _V -> E e. _V ) |
12 |
11
|
resiexd |
|- ( E e. _V -> ( _I |` E ) e. _V ) |
13 |
10 12
|
ax-mp |
|- ( _I |` E ) e. _V |
14 |
4 13
|
pm3.2i |
|- ( V e. _V /\ ( _I |` E ) e. _V ) |
15 |
|
opvtxfv |
|- ( ( V e. _V /\ ( _I |` E ) e. _V ) -> ( Vtx ` <. V , ( _I |` E ) >. ) = V ) |
16 |
14 15
|
mp1i |
|- ( G e. USHGraph -> ( Vtx ` <. V , ( _I |` E ) >. ) = V ) |
17 |
9 16
|
eqtrid |
|- ( G e. USHGraph -> ( Vtx ` H ) = V ) |
18 |
17
|
f1oeq3d |
|- ( G e. USHGraph -> ( ( _I |` V ) : V -1-1-onto-> ( Vtx ` H ) <-> ( _I |` V ) : V -1-1-onto-> V ) ) |
19 |
8 18
|
mpbird |
|- ( G e. USHGraph -> ( _I |` V ) : V -1-1-onto-> ( Vtx ` H ) ) |
20 |
|
fvexd |
|- ( G e. USHGraph -> ( iEdg ` G ) e. _V ) |
21 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
22 |
1 21
|
ushgrf |
|- ( G e. USHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( ~P V \ { (/) } ) ) |
23 |
|
f1f1orn |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( ~P V \ { (/) } ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ran ( iEdg ` G ) ) |
24 |
22 23
|
syl |
|- ( G e. USHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ran ( iEdg ` G ) ) |
25 |
3
|
fveq2i |
|- ( iEdg ` H ) = ( iEdg ` <. V , ( _I |` E ) >. ) |
26 |
10
|
a1i |
|- ( G e. USHGraph -> E e. _V ) |
27 |
26
|
resiexd |
|- ( G e. USHGraph -> ( _I |` E ) e. _V ) |
28 |
|
opiedgfv |
|- ( ( V e. _V /\ ( _I |` E ) e. _V ) -> ( iEdg ` <. V , ( _I |` E ) >. ) = ( _I |` E ) ) |
29 |
4 27 28
|
sylancr |
|- ( G e. USHGraph -> ( iEdg ` <. V , ( _I |` E ) >. ) = ( _I |` E ) ) |
30 |
25 29
|
eqtrid |
|- ( G e. USHGraph -> ( iEdg ` H ) = ( _I |` E ) ) |
31 |
30
|
dmeqd |
|- ( G e. USHGraph -> dom ( iEdg ` H ) = dom ( _I |` E ) ) |
32 |
|
dmresi |
|- dom ( _I |` E ) = E |
33 |
2
|
a1i |
|- ( G e. USHGraph -> E = ( Edg ` G ) ) |
34 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
35 |
33 34
|
eqtrdi |
|- ( G e. USHGraph -> E = ran ( iEdg ` G ) ) |
36 |
32 35
|
eqtrid |
|- ( G e. USHGraph -> dom ( _I |` E ) = ran ( iEdg ` G ) ) |
37 |
31 36
|
eqtrd |
|- ( G e. USHGraph -> dom ( iEdg ` H ) = ran ( iEdg ` G ) ) |
38 |
37
|
f1oeq3d |
|- ( G e. USHGraph -> ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> ran ( iEdg ` G ) ) ) |
39 |
24 38
|
mpbird |
|- ( G e. USHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) |
40 |
|
ushgruhgr |
|- ( G e. USHGraph -> G e. UHGraph ) |
41 |
1 21
|
uhgrss |
|- ( ( G e. UHGraph /\ i e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` i ) C_ V ) |
42 |
40 41
|
sylan |
|- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` i ) C_ V ) |
43 |
|
resiima |
|- ( ( ( iEdg ` G ) ` i ) C_ V -> ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` G ) ` i ) ) |
44 |
42 43
|
syl |
|- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` G ) ` i ) ) |
45 |
|
f1f |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( ~P V \ { (/) } ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) ) |
46 |
22 45
|
syl |
|- ( G e. USHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) ) |
47 |
46
|
ffund |
|- ( G e. USHGraph -> Fun ( iEdg ` G ) ) |
48 |
|
fvelrn |
|- ( ( Fun ( iEdg ` G ) /\ i e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` i ) e. ran ( iEdg ` G ) ) |
49 |
47 48
|
sylan |
|- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` i ) e. ran ( iEdg ` G ) ) |
50 |
2 34
|
eqtri |
|- E = ran ( iEdg ` G ) |
51 |
49 50
|
eleqtrrdi |
|- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` i ) e. E ) |
52 |
|
fvresi |
|- ( ( ( iEdg ` G ) ` i ) e. E -> ( ( _I |` E ) ` ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` G ) ` i ) ) |
53 |
51 52
|
syl |
|- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> ( ( _I |` E ) ` ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` G ) ` i ) ) |
54 |
10
|
a1i |
|- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> E e. _V ) |
55 |
54
|
resiexd |
|- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> ( _I |` E ) e. _V ) |
56 |
4 55 28
|
sylancr |
|- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> ( iEdg ` <. V , ( _I |` E ) >. ) = ( _I |` E ) ) |
57 |
25 56
|
eqtr2id |
|- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> ( _I |` E ) = ( iEdg ` H ) ) |
58 |
57
|
fveq1d |
|- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> ( ( _I |` E ) ` ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( iEdg ` G ) ` i ) ) ) |
59 |
44 53 58
|
3eqtr2d |
|- ( ( G e. USHGraph /\ i e. dom ( iEdg ` G ) ) -> ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( iEdg ` G ) ` i ) ) ) |
60 |
59
|
ralrimiva |
|- ( G e. USHGraph -> A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( iEdg ` G ) ` i ) ) ) |
61 |
39 60
|
jca |
|- ( G e. USHGraph -> ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( iEdg ` G ) ` i ) ) ) ) |
62 |
|
f1oeq1 |
|- ( g = ( iEdg ` G ) -> ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) ) |
63 |
|
fveq1 |
|- ( g = ( iEdg ` G ) -> ( g ` i ) = ( ( iEdg ` G ) ` i ) ) |
64 |
63
|
fveq2d |
|- ( g = ( iEdg ` G ) -> ( ( iEdg ` H ) ` ( g ` i ) ) = ( ( iEdg ` H ) ` ( ( iEdg ` G ) ` i ) ) ) |
65 |
64
|
eqeq2d |
|- ( g = ( iEdg ` G ) -> ( ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) <-> ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( iEdg ` G ) ` i ) ) ) ) |
66 |
65
|
ralbidv |
|- ( g = ( iEdg ` G ) -> ( A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) <-> A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( iEdg ` G ) ` i ) ) ) ) |
67 |
62 66
|
anbi12d |
|- ( g = ( iEdg ` G ) -> ( ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) <-> ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( iEdg ` G ) ` i ) ) ) ) ) |
68 |
20 61 67
|
spcedv |
|- ( G e. USHGraph -> E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) |
69 |
19 68
|
jca |
|- ( G e. USHGraph -> ( ( _I |` V ) : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) ) |
70 |
|
f1oeq1 |
|- ( f = ( _I |` V ) -> ( f : V -1-1-onto-> ( Vtx ` H ) <-> ( _I |` V ) : V -1-1-onto-> ( Vtx ` H ) ) ) |
71 |
|
imaeq1 |
|- ( f = ( _I |` V ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) ) |
72 |
71
|
eqeq1d |
|- ( f = ( _I |` V ) -> ( ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) <-> ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) |
73 |
72
|
ralbidv |
|- ( f = ( _I |` V ) -> ( A. i e. dom ( iEdg ` G ) ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) <-> A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) |
74 |
73
|
anbi2d |
|- ( f = ( _I |` V ) -> ( ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) <-> ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) ) |
75 |
74
|
exbidv |
|- ( f = ( _I |` V ) -> ( E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) <-> E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) ) |
76 |
70 75
|
anbi12d |
|- ( f = ( _I |` V ) -> ( ( f : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) <-> ( ( _I |` V ) : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( _I |` V ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) ) ) |
77 |
6 69 76
|
spcedv |
|- ( G e. USHGraph -> E. f ( f : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) ) |
78 |
|
opex |
|- <. V , ( _I |` E ) >. e. _V |
79 |
3 78
|
eqeltri |
|- H e. _V |
80 |
|
eqid |
|- ( Vtx ` H ) = ( Vtx ` H ) |
81 |
|
eqid |
|- ( iEdg ` H ) = ( iEdg ` H ) |
82 |
1 80 21 81
|
isomgr |
|- ( ( G e. USHGraph /\ H e. _V ) -> ( G IsomGr H <-> E. f ( f : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) ) ) |
83 |
79 82
|
mpan2 |
|- ( G e. USHGraph -> ( G IsomGr H <-> E. f ( f : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) ) ) ) |
84 |
77 83
|
mpbird |
|- ( G e. USHGraph -> G IsomGr H ) |