Step |
Hyp |
Ref |
Expression |
1 |
|
ushrisomgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
ushrisomgr.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
ushrisomgr.s |
⊢ 𝐻 = 〈 𝑉 , ( I ↾ 𝐸 ) 〉 |
4 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
5 |
4
|
a1i |
⊢ ( 𝐺 ∈ USHGraph → 𝑉 ∈ V ) |
6 |
5
|
resiexd |
⊢ ( 𝐺 ∈ USHGraph → ( I ↾ 𝑉 ) ∈ V ) |
7 |
|
f1oi |
⊢ ( I ↾ 𝑉 ) : 𝑉 –1-1-onto→ 𝑉 |
8 |
7
|
a1i |
⊢ ( 𝐺 ∈ USHGraph → ( I ↾ 𝑉 ) : 𝑉 –1-1-onto→ 𝑉 ) |
9 |
3
|
fveq2i |
⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) |
10 |
2
|
fvexi |
⊢ 𝐸 ∈ V |
11 |
|
id |
⊢ ( 𝐸 ∈ V → 𝐸 ∈ V ) |
12 |
11
|
resiexd |
⊢ ( 𝐸 ∈ V → ( I ↾ 𝐸 ) ∈ V ) |
13 |
10 12
|
ax-mp |
⊢ ( I ↾ 𝐸 ) ∈ V |
14 |
4 13
|
pm3.2i |
⊢ ( 𝑉 ∈ V ∧ ( I ↾ 𝐸 ) ∈ V ) |
15 |
|
opvtxfv |
⊢ ( ( 𝑉 ∈ V ∧ ( I ↾ 𝐸 ) ∈ V ) → ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) = 𝑉 ) |
16 |
14 15
|
mp1i |
⊢ ( 𝐺 ∈ USHGraph → ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) = 𝑉 ) |
17 |
9 16
|
syl5eq |
⊢ ( 𝐺 ∈ USHGraph → ( Vtx ‘ 𝐻 ) = 𝑉 ) |
18 |
17
|
f1oeq3d |
⊢ ( 𝐺 ∈ USHGraph → ( ( I ↾ 𝑉 ) : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ↔ ( I ↾ 𝑉 ) : 𝑉 –1-1-onto→ 𝑉 ) ) |
19 |
8 18
|
mpbird |
⊢ ( 𝐺 ∈ USHGraph → ( I ↾ 𝑉 ) : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ) |
20 |
|
fvexd |
⊢ ( 𝐺 ∈ USHGraph → ( iEdg ‘ 𝐺 ) ∈ V ) |
21 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
22 |
1 21
|
ushgrf |
⊢ ( 𝐺 ∈ USHGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
23 |
|
f1f1orn |
⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ( 𝒫 𝑉 ∖ { ∅ } ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ran ( iEdg ‘ 𝐺 ) ) |
24 |
22 23
|
syl |
⊢ ( 𝐺 ∈ USHGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ran ( iEdg ‘ 𝐺 ) ) |
25 |
3
|
fveq2i |
⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) |
26 |
10
|
a1i |
⊢ ( 𝐺 ∈ USHGraph → 𝐸 ∈ V ) |
27 |
26
|
resiexd |
⊢ ( 𝐺 ∈ USHGraph → ( I ↾ 𝐸 ) ∈ V ) |
28 |
|
opiedgfv |
⊢ ( ( 𝑉 ∈ V ∧ ( I ↾ 𝐸 ) ∈ V ) → ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) = ( I ↾ 𝐸 ) ) |
29 |
4 27 28
|
sylancr |
⊢ ( 𝐺 ∈ USHGraph → ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) = ( I ↾ 𝐸 ) ) |
30 |
25 29
|
syl5eq |
⊢ ( 𝐺 ∈ USHGraph → ( iEdg ‘ 𝐻 ) = ( I ↾ 𝐸 ) ) |
31 |
30
|
dmeqd |
⊢ ( 𝐺 ∈ USHGraph → dom ( iEdg ‘ 𝐻 ) = dom ( I ↾ 𝐸 ) ) |
32 |
|
dmresi |
⊢ dom ( I ↾ 𝐸 ) = 𝐸 |
33 |
2
|
a1i |
⊢ ( 𝐺 ∈ USHGraph → 𝐸 = ( Edg ‘ 𝐺 ) ) |
34 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
35 |
33 34
|
eqtrdi |
⊢ ( 𝐺 ∈ USHGraph → 𝐸 = ran ( iEdg ‘ 𝐺 ) ) |
36 |
32 35
|
syl5eq |
⊢ ( 𝐺 ∈ USHGraph → dom ( I ↾ 𝐸 ) = ran ( iEdg ‘ 𝐺 ) ) |
37 |
31 36
|
eqtrd |
⊢ ( 𝐺 ∈ USHGraph → dom ( iEdg ‘ 𝐻 ) = ran ( iEdg ‘ 𝐺 ) ) |
38 |
37
|
f1oeq3d |
⊢ ( 𝐺 ∈ USHGraph → ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ran ( iEdg ‘ 𝐺 ) ) ) |
39 |
24 38
|
mpbird |
⊢ ( 𝐺 ∈ USHGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) |
40 |
|
ushgruhgr |
⊢ ( 𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph ) |
41 |
1 21
|
uhgrss |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑉 ) |
42 |
40 41
|
sylan |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑉 ) |
43 |
|
resiima |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑉 → ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
44 |
42 43
|
syl |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
45 |
|
f1f |
⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ( 𝒫 𝑉 ∖ { ∅ } ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
46 |
22 45
|
syl |
⊢ ( 𝐺 ∈ USHGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
47 |
46
|
ffund |
⊢ ( 𝐺 ∈ USHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
48 |
|
fvelrn |
⊢ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐺 ) ) |
49 |
47 48
|
sylan |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ ran ( iEdg ‘ 𝐺 ) ) |
50 |
2 34
|
eqtri |
⊢ 𝐸 = ran ( iEdg ‘ 𝐺 ) |
51 |
49 50
|
eleqtrrdi |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝐸 ) |
52 |
|
fvresi |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∈ 𝐸 → ( ( I ↾ 𝐸 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
53 |
51 52
|
syl |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( I ↾ 𝐸 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
54 |
10
|
a1i |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → 𝐸 ∈ V ) |
55 |
54
|
resiexd |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( I ↾ 𝐸 ) ∈ V ) |
56 |
4 55 28
|
sylancr |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) = ( I ↾ 𝐸 ) ) |
57 |
25 56
|
eqtr2id |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( I ↾ 𝐸 ) = ( iEdg ‘ 𝐻 ) ) |
58 |
57
|
fveq1d |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( I ↾ 𝐸 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
59 |
44 53 58
|
3eqtr2d |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
60 |
59
|
ralrimiva |
⊢ ( 𝐺 ∈ USHGraph → ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
61 |
39 60
|
jca |
⊢ ( 𝐺 ∈ USHGraph → ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
62 |
|
f1oeq1 |
⊢ ( 𝑔 = ( iEdg ‘ 𝐺 ) → ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ) |
63 |
|
fveq1 |
⊢ ( 𝑔 = ( iEdg ‘ 𝐺 ) → ( 𝑔 ‘ 𝑖 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
64 |
63
|
fveq2d |
⊢ ( 𝑔 = ( iEdg ‘ 𝐺 ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
65 |
64
|
eqeq2d |
⊢ ( 𝑔 = ( iEdg ‘ 𝐺 ) → ( ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
66 |
65
|
ralbidv |
⊢ ( 𝑔 = ( iEdg ‘ 𝐺 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
67 |
62 66
|
anbi12d |
⊢ ( 𝑔 = ( iEdg ‘ 𝐺 ) → ( ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ↔ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
68 |
20 61 67
|
spcedv |
⊢ ( 𝐺 ∈ USHGraph → ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
69 |
19 68
|
jca |
⊢ ( 𝐺 ∈ USHGraph → ( ( I ↾ 𝑉 ) : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
70 |
|
f1oeq1 |
⊢ ( 𝑓 = ( I ↾ 𝑉 ) → ( 𝑓 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ↔ ( I ↾ 𝑉 ) : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ) |
71 |
|
imaeq1 |
⊢ ( 𝑓 = ( I ↾ 𝑉 ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
72 |
71
|
eqeq1d |
⊢ ( 𝑓 = ( I ↾ 𝑉 ) → ( ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
73 |
72
|
ralbidv |
⊢ ( 𝑓 = ( I ↾ 𝑉 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
74 |
73
|
anbi2d |
⊢ ( 𝑓 = ( I ↾ 𝑉 ) → ( ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ↔ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
75 |
74
|
exbidv |
⊢ ( 𝑓 = ( I ↾ 𝑉 ) → ( ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ↔ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
76 |
70 75
|
anbi12d |
⊢ ( 𝑓 = ( I ↾ 𝑉 ) → ( ( 𝑓 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ↔ ( ( I ↾ 𝑉 ) : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( I ↾ 𝑉 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
77 |
6 69 76
|
spcedv |
⊢ ( 𝐺 ∈ USHGraph → ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
78 |
|
opex |
⊢ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ∈ V |
79 |
3 78
|
eqeltri |
⊢ 𝐻 ∈ V |
80 |
|
eqid |
⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) |
81 |
|
eqid |
⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 ) |
82 |
1 80 21 81
|
isomgr |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝐻 ∈ V ) → ( 𝐺 IsomGr 𝐻 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
83 |
79 82
|
mpan2 |
⊢ ( 𝐺 ∈ USHGraph → ( 𝐺 IsomGr 𝐻 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
84 |
77 83
|
mpbird |
⊢ ( 𝐺 ∈ USHGraph → 𝐺 IsomGr 𝐻 ) |