Metamath Proof Explorer


Theorem 0plef

Description: Two ways to say that the function F on the reals is nonnegative. (Contributed by Mario Carneiro, 17-Aug-2014)

Ref Expression
Assertion 0plef F:0+∞F:0𝑝fF

Proof

Step Hyp Ref Expression
1 rge0ssre 0+∞
2 fss F:0+∞0+∞F:
3 1 2 mpan2 F:0+∞F:
4 ffvelcdm F:xFx
5 elrege0 Fx0+∞Fx0Fx
6 5 baib FxFx0+∞0Fx
7 4 6 syl F:xFx0+∞0Fx
8 7 ralbidva F:xFx0+∞x0Fx
9 ffn F:FFn
10 ffnfv F:0+∞FFnxFx0+∞
11 10 baib FFnF:0+∞xFx0+∞
12 9 11 syl F:F:0+∞xFx0+∞
13 0cn 0
14 fnconstg 0×0Fn
15 13 14 ax-mp ×0Fn
16 df-0p 0𝑝=×0
17 16 fneq1i 0𝑝Fn×0Fn
18 15 17 mpbir 0𝑝Fn
19 18 a1i F:0𝑝Fn
20 cnex V
21 20 a1i F:V
22 reex V
23 22 a1i F:V
24 ax-resscn
25 sseqin2 =
26 24 25 mpbi =
27 0pval x0𝑝x=0
28 27 adantl F:x0𝑝x=0
29 eqidd F:xFx=Fx
30 19 9 21 23 26 28 29 ofrfval F:0𝑝fFx0Fx
31 8 12 30 3bitr4d F:F:0+∞0𝑝fF
32 3 31 biadanii F:0+∞F:0𝑝fF