| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-1cn |  | 
						
							| 2 |  | 1nn0 |  | 
						
							| 3 |  | sgmppw |  | 
						
							| 4 | 1 2 3 | mp3an13 |  | 
						
							| 5 |  | prmnn |  | 
						
							| 6 | 5 | nncnd |  | 
						
							| 7 | 6 | exp1d |  | 
						
							| 8 | 7 | oveq2d |  | 
						
							| 9 | 6 | adantr |  | 
						
							| 10 | 9 | cxp1d |  | 
						
							| 11 | 10 | oveq1d |  | 
						
							| 12 | 11 | sumeq2dv |  | 
						
							| 13 |  | 1m1e0 |  | 
						
							| 14 | 13 | oveq2i |  | 
						
							| 15 | 14 | sumeq1i |  | 
						
							| 16 |  | 0z |  | 
						
							| 17 | 6 | exp0d |  | 
						
							| 18 | 17 1 | eqeltrdi |  | 
						
							| 19 |  | oveq2 |  | 
						
							| 20 | 19 | fsum1 |  | 
						
							| 21 | 16 18 20 | sylancr |  | 
						
							| 22 | 21 17 | eqtrd |  | 
						
							| 23 | 15 22 | eqtrid |  | 
						
							| 24 | 23 7 | oveq12d |  | 
						
							| 25 | 2 | a1i |  | 
						
							| 26 |  | nn0uz |  | 
						
							| 27 | 25 26 | eleqtrdi |  | 
						
							| 28 |  | elfznn0 |  | 
						
							| 29 |  | expcl |  | 
						
							| 30 | 6 28 29 | syl2an |  | 
						
							| 31 |  | oveq2 |  | 
						
							| 32 | 27 30 31 | fsumm1 |  | 
						
							| 33 |  | addcom |  | 
						
							| 34 | 6 1 33 | sylancl |  | 
						
							| 35 | 24 32 34 | 3eqtr4d |  | 
						
							| 36 | 12 35 | eqtrd |  | 
						
							| 37 | 4 8 36 | 3eqtr3d |  |