Metamath Proof Explorer


Theorem 2arymptfv

Description: The value of a binary (endo)function in maps-to notation. (Contributed by AV, 20-May-2024)

Ref Expression
Hypothesis 2arympt.f F=xX01x0Ox1
Assertion 2arymptfv XVAXBXF0A1B=AOB

Proof

Step Hyp Ref Expression
1 2arympt.f F=xX01x0Ox1
2 fveq1 x=0A1Bx0=0A1B0
3 2 adantl XVAXBXx=0A1Bx0=0A1B0
4 c0ex 0V
5 4 a1i XVAXBX0V
6 simp2 XVAXBXAX
7 0ne1 01
8 7 a1i XVAXBX01
9 5 6 8 3jca XVAXBX0VAX01
10 9 adantr XVAXBXx=0A1B0VAX01
11 fvpr1g 0VAX010A1B0=A
12 10 11 syl XVAXBXx=0A1B0A1B0=A
13 3 12 eqtrd XVAXBXx=0A1Bx0=A
14 fveq1 x=0A1Bx1=0A1B1
15 1ex 1V
16 simp3 XVAXBXBX
17 fvpr2g 1VBX010A1B1=B
18 15 16 8 17 mp3an2i XVAXBX0A1B1=B
19 14 18 sylan9eqr XVAXBXx=0A1Bx1=B
20 13 19 oveq12d XVAXBXx=0A1Bx0Ox1=AOB
21 simp1 XVAXBXXV
22 4 15 7 3pm3.2i 0V1V01
23 22 a1i XVAXBX0V1V01
24 3simpc XVAXBXAXBX
25 fprmappr XV0V1V01AXBX0A1BX01
26 21 23 24 25 syl3anc XVAXBX0A1BX01
27 ovexd XVAXBXAOBV
28 1 20 26 27 fvmptd2 XVAXBXF0A1B=AOB