Metamath Proof Explorer


Theorem 2lgslem3b1

Description: Lemma 2 for 2lgslem3 . (Contributed by AV, 16-Jul-2021)

Ref Expression
Hypothesis 2lgslem2.n N=P12P4
Assertion 2lgslem3b1 PPmod8=3Nmod2=1

Proof

Step Hyp Ref Expression
1 2lgslem2.n N=P12P4
2 nnnn0 PP0
3 8nn 8
4 nnrp 88+
5 3 4 ax-mp 8+
6 modmuladdnn0 P08+Pmod8=3k0P=k8+3
7 2 5 6 sylancl PPmod8=3k0P=k8+3
8 simpr Pk0k0
9 nn0cn k0k
10 8cn 8
11 10 a1i k08
12 9 11 mulcomd k0k8=8k
13 12 adantl Pk0k8=8k
14 13 oveq1d Pk0k8+3=8k+3
15 14 eqeq2d Pk0P=k8+3P=8k+3
16 15 biimpa Pk0P=k8+3P=8k+3
17 1 2lgslem3b k0P=8k+3N=2k+1
18 8 16 17 syl2an2r Pk0P=k8+3N=2k+1
19 oveq1 N=2k+1Nmod2=2k+1mod2
20 nn0z k0k
21 eqidd k02k+1=2k+1
22 2tp1odd k2k+1=2k+1¬22k+1
23 20 21 22 syl2anc k0¬22k+1
24 2z 2
25 24 a1i k02
26 25 20 zmulcld k02k
27 26 peano2zd k02k+1
28 mod2eq1n2dvds 2k+12k+1mod2=1¬22k+1
29 27 28 syl k02k+1mod2=1¬22k+1
30 23 29 mpbird k02k+1mod2=1
31 19 30 sylan9eqr k0N=2k+1Nmod2=1
32 8 18 31 syl2an2r Pk0P=k8+3Nmod2=1
33 32 rexlimdva2 Pk0P=k8+3Nmod2=1
34 7 33 syld PPmod8=3Nmod2=1
35 34 imp PPmod8=3Nmod2=1