Metamath Proof Explorer


Theorem 2lnat

Description: Two intersecting lines intersect at an atom. (Contributed by NM, 30-Apr-2012)

Ref Expression
Hypotheses 2lnat.b B=BaseK
2lnat.m ˙=meetK
2lnat.z 0˙=0.K
2lnat.a A=AtomsK
2lnat.n N=LinesK
2lnat.f F=pmapK
Assertion 2lnat KHLXBYBFXNFYNXYX˙Y0˙X˙YA

Proof

Step Hyp Ref Expression
1 2lnat.b B=BaseK
2 2lnat.m ˙=meetK
3 2lnat.z 0˙=0.K
4 2lnat.a A=AtomsK
5 2lnat.n N=LinesK
6 2lnat.f F=pmapK
7 simp11 KHLXBYBFXNFYNXYX˙Y0˙KHL
8 hlatl KHLKAtLat
9 7 8 syl KHLXBYBFXNFYNXYX˙Y0˙KAtLat
10 7 hllatd KHLXBYBFXNFYNXYX˙Y0˙KLat
11 simp12 KHLXBYBFXNFYNXYX˙Y0˙XB
12 simp13 KHLXBYBFXNFYNXYX˙Y0˙YB
13 1 2 latmcl KLatXBYBX˙YB
14 10 11 12 13 syl3anc KHLXBYBFXNFYNXYX˙Y0˙X˙YB
15 simp3r KHLXBYBFXNFYNXYX˙Y0˙X˙Y0˙
16 eqid K=K
17 1 16 3 4 atlex KAtLatX˙YBX˙Y0˙pApKX˙Y
18 9 14 15 17 syl3anc KHLXBYBFXNFYNXYX˙Y0˙pApKX˙Y
19 simp13l KHLXBYBFXNFYNXYX˙Y0˙pApKX˙YXY
20 simp11 KHLXBYBFXNFYNXYX˙Y0˙pApKX˙YKHLXBYB
21 simp12l KHLXBYBFXNFYNXYX˙Y0˙pApKX˙YFXN
22 simp12r KHLXBYBFXNFYNXYX˙Y0˙pApKX˙YFYN
23 1 16 5 6 lncmp KHLXBYBFXNFYNXKYX=Y
24 20 21 22 23 syl12anc KHLXBYBFXNFYNXYX˙Y0˙pApKX˙YXKYX=Y
25 simp111 KHLXBYBFXNFYNXYX˙Y0˙pApKX˙YKHL
26 25 hllatd KHLXBYBFXNFYNXYX˙Y0˙pApKX˙YKLat
27 simp112 KHLXBYBFXNFYNXYX˙Y0˙pApKX˙YXB
28 simp113 KHLXBYBFXNFYNXYX˙Y0˙pApKX˙YYB
29 1 16 2 latleeqm1 KLatXBYBXKYX˙Y=X
30 26 27 28 29 syl3anc KHLXBYBFXNFYNXYX˙Y0˙pApKX˙YXKYX˙Y=X
31 24 30 bitr3d KHLXBYBFXNFYNXYX˙Y0˙pApKX˙YX=YX˙Y=X
32 31 necon3bid KHLXBYBFXNFYNXYX˙Y0˙pApKX˙YXYX˙YX
33 19 32 mpbid KHLXBYBFXNFYNXYX˙Y0˙pApKX˙YX˙YX
34 simp3 KHLXBYBFXNFYNXYX˙Y0˙pApKX˙YpKX˙Y
35 1 16 2 latmle1 KLatXBYBX˙YKX
36 26 27 28 35 syl3anc KHLXBYBFXNFYNXYX˙Y0˙pApKX˙YX˙YKX
37 hlpos KHLKPoset
38 25 37 syl KHLXBYBFXNFYNXYX˙Y0˙pApKX˙YKPoset
39 1 4 atbase pApB
40 39 3ad2ant2 KHLXBYBFXNFYNXYX˙Y0˙pApKX˙YpB
41 26 27 28 13 syl3anc KHLXBYBFXNFYNXYX˙Y0˙pApKX˙YX˙YB
42 simp2 KHLXBYBFXNFYNXYX˙Y0˙pApKX˙YpA
43 1 16 26 40 41 27 34 36 lattrd KHLXBYBFXNFYNXYX˙Y0˙pApKX˙YpKX
44 eqid K=K
45 1 16 44 4 5 6 lncvrat KHLXBpAFXNpKXpKX
46 25 27 42 21 43 45 syl32anc KHLXBYBFXNFYNXYX˙Y0˙pApKX˙YpKX
47 1 16 44 cvrnbtwn4 KPosetpBXBX˙YBpKXpKX˙YX˙YKXp=X˙YX˙Y=X
48 38 40 27 41 46 47 syl131anc KHLXBYBFXNFYNXYX˙Y0˙pApKX˙YpKX˙YX˙YKXp=X˙YX˙Y=X
49 34 36 48 mpbi2and KHLXBYBFXNFYNXYX˙Y0˙pApKX˙Yp=X˙YX˙Y=X
50 neor p=X˙YX˙Y=XpX˙YX˙Y=X
51 49 50 sylib KHLXBYBFXNFYNXYX˙Y0˙pApKX˙YpX˙YX˙Y=X
52 51 necon1d KHLXBYBFXNFYNXYX˙Y0˙pApKX˙YX˙YXp=X˙Y
53 33 52 mpd KHLXBYBFXNFYNXYX˙Y0˙pApKX˙Yp=X˙Y
54 53 3exp KHLXBYBFXNFYNXYX˙Y0˙pApKX˙Yp=X˙Y
55 54 reximdvai KHLXBYBFXNFYNXYX˙Y0˙pApKX˙YpAp=X˙Y
56 18 55 mpd KHLXBYBFXNFYNXYX˙Y0˙pAp=X˙Y
57 risset X˙YApAp=X˙Y
58 56 57 sylibr KHLXBYBFXNFYNXYX˙Y0˙X˙YA