Metamath Proof Explorer


Theorem 2tnp1ge0ge0

Description: Two times an integer plus one is not negative iff the integer is not negative. (Contributed by AV, 19-Jun-2021) (Proof shortened by AV, 10-Jul-2022)

Ref Expression
Assertion 2tnp1ge0ge0 N02 N+10N

Proof

Step Hyp Ref Expression
1 2z 2
2 1 a1i N2
3 id NN
4 2 3 zmulcld N2 N
5 4 peano2zd N2 N+1
6 5 zred N2 N+1
7 2rp 2+
8 7 a1i N2+
9 6 8 ge0divd N02 N+102 N+12
10 4 zcnd N2 N
11 1cnd N1
12 2cnne0 220
13 12 a1i N220
14 divdir 2 N12202 N+12=2 N2+12
15 10 11 13 14 syl3anc N2 N+12=2 N2+12
16 zcn NN
17 2cnd N2
18 2ne0 20
19 18 a1i N20
20 16 17 19 divcan3d N2 N2=N
21 20 oveq1d N2 N2+12=N+12
22 15 21 eqtrd N2 N+12=N+12
23 22 breq2d N02 N+120N+12
24 zre NN
25 halfre 12
26 25 a1i N12
27 24 26 readdcld NN+12
28 halfge0 012
29 24 26 addge01d N012NN+12
30 28 29 mpbii NNN+12
31 1red N1
32 halflt1 12<1
33 32 a1i N12<1
34 26 31 24 33 ltadd2dd NN+12<N+1
35 btwnzge0 N+12NNN+12N+12<N+10N+120N
36 27 3 30 34 35 syl22anc N0N+120N
37 9 23 36 3bitrd N02 N+10N