Description: There exists a 3-dimensional (height-4) element i.e. a volume. (Contributed by NM, 25-Jul-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 3dim0.j | |
|
3dim0.l | |
||
3dim0.a | |
||
Assertion | 3dim0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3dim0.j | |
|
2 | 3dim0.l | |
|
3 | 3dim0.a | |
|
4 | eqid | |
|
5 | 1 4 3 | athgt | |
6 | df-3an | |
|
7 | simpll1 | |
|
8 | eqid | |
|
9 | 8 1 3 | hlatjcl | |
10 | 9 | ad2antrr | |
11 | simplr | |
|
12 | 8 2 1 4 3 | cvr1 | |
13 | 7 10 11 12 | syl3anc | |
14 | 13 | anbi2d | |
15 | 7 | hllatd | |
16 | 8 3 | atbase | |
17 | 16 | ad2antlr | |
18 | 8 1 | latjcl | |
19 | 15 10 17 18 | syl3anc | |
20 | simpr | |
|
21 | 8 2 1 4 3 | cvr1 | |
22 | 7 19 20 21 | syl3anc | |
23 | 14 22 | anbi12d | |
24 | 6 23 | bitrid | |
25 | 24 | rexbidva | |
26 | r19.42v | |
|
27 | anass | |
|
28 | 26 27 | bitri | |
29 | 25 28 | bitrdi | |
30 | 29 | rexbidva | |
31 | r19.42v | |
|
32 | 30 31 | bitrdi | |
33 | 1 4 3 | atcvr1 | |
34 | 33 | anbi1d | |
35 | 32 34 | bitrd | |
36 | 35 | 3expb | |
37 | 36 | 2rexbidva | |
38 | 5 37 | mpbird | |