Metamath Proof Explorer


Theorem 3dim0

Description: There exists a 3-dimensional (height-4) element i.e. a volume. (Contributed by NM, 25-Jul-2012)

Ref Expression
Hypotheses 3dim0.j ˙=joinK
3dim0.l ˙=K
3dim0.a A=AtomsK
Assertion 3dim0 KHLpAqArAsApq¬r˙p˙q¬s˙p˙q˙r

Proof

Step Hyp Ref Expression
1 3dim0.j ˙=joinK
2 3dim0.l ˙=K
3 3dim0.a A=AtomsK
4 eqid K=K
5 1 4 3 athgt KHLpAqApKp˙qrAp˙qKp˙q˙rsAp˙q˙rKp˙q˙r˙s
6 df-3an pq¬r˙p˙q¬s˙p˙q˙rpq¬r˙p˙q¬s˙p˙q˙r
7 simpll1 KHLpAqArAsAKHL
8 eqid BaseK=BaseK
9 8 1 3 hlatjcl KHLpAqAp˙qBaseK
10 9 ad2antrr KHLpAqArAsAp˙qBaseK
11 simplr KHLpAqArAsArA
12 8 2 1 4 3 cvr1 KHLp˙qBaseKrA¬r˙p˙qp˙qKp˙q˙r
13 7 10 11 12 syl3anc KHLpAqArAsA¬r˙p˙qp˙qKp˙q˙r
14 13 anbi2d KHLpAqArAsApq¬r˙p˙qpqp˙qKp˙q˙r
15 7 hllatd KHLpAqArAsAKLat
16 8 3 atbase rArBaseK
17 16 ad2antlr KHLpAqArAsArBaseK
18 8 1 latjcl KLatp˙qBaseKrBaseKp˙q˙rBaseK
19 15 10 17 18 syl3anc KHLpAqArAsAp˙q˙rBaseK
20 simpr KHLpAqArAsAsA
21 8 2 1 4 3 cvr1 KHLp˙q˙rBaseKsA¬s˙p˙q˙rp˙q˙rKp˙q˙r˙s
22 7 19 20 21 syl3anc KHLpAqArAsA¬s˙p˙q˙rp˙q˙rKp˙q˙r˙s
23 14 22 anbi12d KHLpAqArAsApq¬r˙p˙q¬s˙p˙q˙rpqp˙qKp˙q˙rp˙q˙rKp˙q˙r˙s
24 6 23 bitrid KHLpAqArAsApq¬r˙p˙q¬s˙p˙q˙rpqp˙qKp˙q˙rp˙q˙rKp˙q˙r˙s
25 24 rexbidva KHLpAqArAsApq¬r˙p˙q¬s˙p˙q˙rsApqp˙qKp˙q˙rp˙q˙rKp˙q˙r˙s
26 r19.42v sApqp˙qKp˙q˙rp˙q˙rKp˙q˙r˙spqp˙qKp˙q˙rsAp˙q˙rKp˙q˙r˙s
27 anass pqp˙qKp˙q˙rsAp˙q˙rKp˙q˙r˙spqp˙qKp˙q˙rsAp˙q˙rKp˙q˙r˙s
28 26 27 bitri sApqp˙qKp˙q˙rp˙q˙rKp˙q˙r˙spqp˙qKp˙q˙rsAp˙q˙rKp˙q˙r˙s
29 25 28 bitrdi KHLpAqArAsApq¬r˙p˙q¬s˙p˙q˙rpqp˙qKp˙q˙rsAp˙q˙rKp˙q˙r˙s
30 29 rexbidva KHLpAqArAsApq¬r˙p˙q¬s˙p˙q˙rrApqp˙qKp˙q˙rsAp˙q˙rKp˙q˙r˙s
31 r19.42v rApqp˙qKp˙q˙rsAp˙q˙rKp˙q˙r˙spqrAp˙qKp˙q˙rsAp˙q˙rKp˙q˙r˙s
32 30 31 bitrdi KHLpAqArAsApq¬r˙p˙q¬s˙p˙q˙rpqrAp˙qKp˙q˙rsAp˙q˙rKp˙q˙r˙s
33 1 4 3 atcvr1 KHLpAqApqpKp˙q
34 33 anbi1d KHLpAqApqrAp˙qKp˙q˙rsAp˙q˙rKp˙q˙r˙spKp˙qrAp˙qKp˙q˙rsAp˙q˙rKp˙q˙r˙s
35 32 34 bitrd KHLpAqArAsApq¬r˙p˙q¬s˙p˙q˙rpKp˙qrAp˙qKp˙q˙rsAp˙q˙rKp˙q˙r˙s
36 35 3expb KHLpAqArAsApq¬r˙p˙q¬s˙p˙q˙rpKp˙qrAp˙qKp˙q˙rsAp˙q˙rKp˙q˙r˙s
37 36 2rexbidva KHLpAqArAsApq¬r˙p˙q¬s˙p˙q˙rpAqApKp˙qrAp˙qKp˙q˙rsAp˙q˙rKp˙q˙r˙s
38 5 37 mpbird KHLpAqArAsApq¬r˙p˙q¬s˙p˙q˙r