Metamath Proof Explorer


Theorem 4atex

Description: Whenever there are at least 4 atoms under P .\/ Q (specifically, P , Q , r , and ( P .\/ Q ) ./\ W ), there are also at least 4 atoms under P .\/ S . This proves the statement in Lemma E of Crawley p. 114, last line, "...p \/ q/0 and hence p \/ s/0 contains at least four atoms..." Note that by cvlsupr2 , our ( P .\/ r ) = ( Q .\/ r ) is a shorter way to express r =/= P /\ r =/= Q /\ r .<_ ( P .\/ Q ) . (Contributed by NM, 27-May-2013)

Ref Expression
Hypotheses 4that.l ˙=K
4that.j ˙=joinK
4that.a A=AtomsK
4that.h H=LHypK
Assertion 4atex KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rzA¬z˙WP˙z=S˙z

Proof

Step Hyp Ref Expression
1 4that.l ˙=K
2 4that.j ˙=joinK
3 4that.a A=AtomsK
4 4that.h H=LHypK
5 simp21l KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rPA
6 5 ad2antrr KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rS˙P˙QS=PPA
7 simp21r KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙r¬P˙W
8 7 ad2antrr KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rS˙P˙QS=P¬P˙W
9 oveq1 P=SP˙P=S˙P
10 9 eqcoms S=PP˙P=S˙P
11 10 adantl KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rS˙P˙QS=PP˙P=S˙P
12 breq1 z=Pz˙WP˙W
13 12 notbid z=P¬z˙W¬P˙W
14 oveq2 z=PP˙z=P˙P
15 oveq2 z=PS˙z=S˙P
16 14 15 eqeq12d z=PP˙z=S˙zP˙P=S˙P
17 13 16 anbi12d z=P¬z˙WP˙z=S˙z¬P˙WP˙P=S˙P
18 17 rspcev PA¬P˙WP˙P=S˙PzA¬z˙WP˙z=S˙z
19 6 8 11 18 syl12anc KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rS˙P˙QS=PzA¬z˙WP˙z=S˙z
20 simpl3r KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rS˙P˙QrA¬r˙WP˙r=Q˙r
21 20 ad2antrr KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rS˙P˙QSPS=QrA¬r˙WP˙r=Q˙r
22 breq1 r=zr˙Wz˙W
23 22 notbid r=z¬r˙W¬z˙W
24 oveq2 r=zP˙r=P˙z
25 oveq2 r=zQ˙r=Q˙z
26 24 25 eqeq12d r=zP˙r=Q˙rP˙z=Q˙z
27 23 26 anbi12d r=z¬r˙WP˙r=Q˙r¬z˙WP˙z=Q˙z
28 27 cbvrexvw rA¬r˙WP˙r=Q˙rzA¬z˙WP˙z=Q˙z
29 oveq1 S=QS˙z=Q˙z
30 29 eqeq2d S=QP˙z=S˙zP˙z=Q˙z
31 30 anbi2d S=Q¬z˙WP˙z=S˙z¬z˙WP˙z=Q˙z
32 31 rexbidv S=QzA¬z˙WP˙z=S˙zzA¬z˙WP˙z=Q˙z
33 28 32 bitr4id S=QrA¬r˙WP˙r=Q˙rzA¬z˙WP˙z=S˙z
34 33 adantl KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rS˙P˙QSPS=QrA¬r˙WP˙r=Q˙rzA¬z˙WP˙z=S˙z
35 21 34 mpbid KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rS˙P˙QSPS=QzA¬z˙WP˙z=S˙z
36 simp22l KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rQA
37 36 ad3antrrr KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rS˙P˙QSPSQQA
38 simp22r KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙r¬Q˙W
39 38 ad3antrrr KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rS˙P˙QSPSQ¬Q˙W
40 simp3l KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rPQ
41 40 necomd KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rQP
42 41 ad3antrrr KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rS˙P˙QSPSQQP
43 simpr KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rS˙P˙QSPSQSQ
44 43 necomd KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rS˙P˙QSPSQQS
45 simpllr KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rS˙P˙QSPSQS˙P˙Q
46 simp1l KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rKHL
47 hlcvl KHLKCvLat
48 46 47 syl KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rKCvLat
49 48 ad3antrrr KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rS˙P˙QSPSQKCvLat
50 simp23 KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rSA
51 50 ad3antrrr KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rS˙P˙QSPSQSA
52 5 ad3antrrr KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rS˙P˙QSPSQPA
53 simplr KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rS˙P˙QSPSQSP
54 1 2 3 cvlatexch1 KCvLatSAQAPASPS˙P˙QQ˙P˙S
55 49 51 37 52 53 54 syl131anc KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rS˙P˙QSPSQS˙P˙QQ˙P˙S
56 45 55 mpd KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rS˙P˙QSPSQQ˙P˙S
57 53 necomd KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rS˙P˙QSPSQPS
58 3 1 2 cvlsupr2 KCvLatPASAQAPSP˙Q=S˙QQPQSQ˙P˙S
59 49 52 51 37 57 58 syl131anc KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rS˙P˙QSPSQP˙Q=S˙QQPQSQ˙P˙S
60 42 44 56 59 mpbir3and KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rS˙P˙QSPSQP˙Q=S˙Q
61 breq1 z=Qz˙WQ˙W
62 61 notbid z=Q¬z˙W¬Q˙W
63 oveq2 z=QP˙z=P˙Q
64 oveq2 z=QS˙z=S˙Q
65 63 64 eqeq12d z=QP˙z=S˙zP˙Q=S˙Q
66 62 65 anbi12d z=Q¬z˙WP˙z=S˙z¬Q˙WP˙Q=S˙Q
67 66 rspcev QA¬Q˙WP˙Q=S˙QzA¬z˙WP˙z=S˙z
68 37 39 60 67 syl12anc KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rS˙P˙QSPSQzA¬z˙WP˙z=S˙z
69 35 68 pm2.61dane KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rS˙P˙QSPzA¬z˙WP˙z=S˙z
70 19 69 pm2.61dane KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rS˙P˙QzA¬z˙WP˙z=S˙z
71 simpl1 KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙r¬S˙P˙QKHLWH
72 simpl2 KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙r¬S˙P˙QPA¬P˙WQA¬Q˙WSA
73 simpl3l KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙r¬S˙P˙QPQ
74 simpr KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙r¬S˙P˙Q¬S˙P˙Q
75 simpl3r KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙r¬S˙P˙QrA¬r˙WP˙r=Q˙r
76 1 2 3 4 4atexlem7 KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QrA¬r˙WP˙r=Q˙rzA¬z˙WP˙z=S˙z
77 71 72 73 74 75 76 syl113anc KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙r¬S˙P˙QzA¬z˙WP˙z=S˙z
78 70 77 pm2.61dan KHLWHPA¬P˙WQA¬Q˙WSAPQrA¬r˙WP˙r=Q˙rzA¬z˙WP˙z=S˙z