Description: Whenever there are at least 4 atoms under P .\/ Q (specifically, P , Q , r , and ( P .\/ Q ) ./\ W ), there are also at least 4 atoms under P .\/ S . This proves the statement in Lemma E of Crawley p. 114, last line, "...p \/ q/0 and hence p \/ s/0 contains at least four atoms..." Note that by cvlsupr2 , our ( P .\/ r ) = ( Q .\/ r ) is a shorter way to express r =/= P /\ r =/= Q /\ r .<_ ( P .\/ Q ) . (Contributed by NM, 27-May-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 4that.l | |
|
4that.j | |
||
4that.a | |
||
4that.h | |
||
Assertion | 4atex | |