Metamath Proof Explorer


Theorem 4atlem10

Description: Lemma for 4at . Combine both possible cases. (Contributed by NM, 9-Jul-2012)

Ref Expression
Hypotheses 4at.l ˙=K
4at.j ˙=joinK
4at.a A=AtomsK
Assertion 4atlem10 KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RR˙S˙P˙Q˙V˙WP˙Q˙R˙S=P˙Q˙V˙W

Proof

Step Hyp Ref Expression
1 4at.l ˙=K
2 4at.j ˙=joinK
3 4at.a A=AtomsK
4 simp11 KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RKHL
5 4 hllatd KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RKLat
6 simp21l KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RRA
7 eqid BaseK=BaseK
8 7 3 atbase RARBaseK
9 6 8 syl KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RRBaseK
10 simp21r KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RSA
11 7 3 atbase SASBaseK
12 10 11 syl KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RSBaseK
13 7 2 3 hlatjcl KHLPAQAP˙QBaseK
14 13 3ad2ant1 KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙QBaseK
15 simp22 KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RVA
16 simp23 KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RWA
17 7 2 3 hlatjcl KHLVAWAV˙WBaseK
18 4 15 16 17 syl3anc KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RV˙WBaseK
19 7 2 latjcl KLatP˙QBaseKV˙WBaseKP˙Q˙V˙WBaseK
20 5 14 18 19 syl3anc KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙V˙WBaseK
21 7 1 2 latjle12 KLatRBaseKSBaseKP˙Q˙V˙WBaseKR˙P˙Q˙V˙WS˙P˙Q˙V˙WR˙S˙P˙Q˙V˙W
22 5 9 12 20 21 syl13anc KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RR˙P˙Q˙V˙WS˙P˙Q˙V˙WR˙S˙P˙Q˙V˙W
23 simp11 KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙Q˙WR˙P˙Q˙V˙WS˙P˙Q˙V˙WKHLPAQA
24 6 10 15 3jca KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RRASAVA
25 24 3ad2ant1 KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙Q˙WR˙P˙Q˙V˙WS˙P˙Q˙V˙WRASAVA
26 16 3ad2ant1 KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙Q˙WR˙P˙Q˙V˙WS˙P˙Q˙V˙WWA
27 simp2 KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙Q˙WR˙P˙Q˙V˙WS˙P˙Q˙V˙W¬R˙P˙Q˙W
28 simp33 KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬S˙P˙Q˙R
29 28 3ad2ant1 KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙Q˙WR˙P˙Q˙V˙WS˙P˙Q˙V˙W¬S˙P˙Q˙R
30 26 27 29 3jca KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙Q˙WR˙P˙Q˙V˙WS˙P˙Q˙V˙WWA¬R˙P˙Q˙W¬S˙P˙Q˙R
31 simp3 KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙Q˙WR˙P˙Q˙V˙WS˙P˙Q˙V˙WR˙P˙Q˙V˙WS˙P˙Q˙V˙W
32 1 2 3 4atlem10b KHLPAQARASAVAWA¬R˙P˙Q˙W¬S˙P˙Q˙RR˙P˙Q˙V˙WS˙P˙Q˙V˙WP˙Q˙R˙S=P˙Q˙V˙W
33 23 25 30 31 32 syl31anc KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙Q˙WR˙P˙Q˙V˙WS˙P˙Q˙V˙WP˙Q˙R˙S=P˙Q˙V˙W
34 33 3exp KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙Q˙WR˙P˙Q˙V˙WS˙P˙Q˙V˙WP˙Q˙R˙S=P˙Q˙V˙W
35 2 3 hlatjcom KHLSARAS˙R=R˙S
36 4 10 6 35 syl3anc KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RS˙R=R˙S
37 36 oveq2d KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙S˙R=P˙Q˙R˙S
38 37 3ad2ant1 KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬S˙P˙Q˙WR˙P˙Q˙V˙WS˙P˙Q˙V˙WP˙Q˙S˙R=P˙Q˙R˙S
39 simp11 KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬S˙P˙Q˙WR˙P˙Q˙V˙WS˙P˙Q˙V˙WKHLPAQA
40 10 6 15 3jca KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RSARAVA
41 40 3ad2ant1 KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬S˙P˙Q˙WR˙P˙Q˙V˙WS˙P˙Q˙V˙WSARAVA
42 16 3ad2ant1 KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬S˙P˙Q˙WR˙P˙Q˙V˙WS˙P˙Q˙V˙WWA
43 simp2 KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬S˙P˙Q˙WR˙P˙Q˙V˙WS˙P˙Q˙V˙W¬S˙P˙Q˙W
44 simp12 KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RPA
45 simp13 KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RQA
46 44 45 jca KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RPAQA
47 simp21 KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RRASA
48 simp32 KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙Q
49 1 2 3 4atlem0a KHLPAQARASA¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙Q˙S
50 4 46 47 48 28 49 syl32anc KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙Q˙S
51 50 3ad2ant1 KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬S˙P˙Q˙WR˙P˙Q˙V˙WS˙P˙Q˙V˙W¬R˙P˙Q˙S
52 42 43 51 3jca KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬S˙P˙Q˙WR˙P˙Q˙V˙WS˙P˙Q˙V˙WWA¬S˙P˙Q˙W¬R˙P˙Q˙S
53 simprr KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RR˙P˙Q˙V˙WS˙P˙Q˙V˙WS˙P˙Q˙V˙W
54 simprl KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RR˙P˙Q˙V˙WS˙P˙Q˙V˙WR˙P˙Q˙V˙W
55 53 54 jca KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RR˙P˙Q˙V˙WS˙P˙Q˙V˙WS˙P˙Q˙V˙WR˙P˙Q˙V˙W
56 55 3adant2 KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬S˙P˙Q˙WR˙P˙Q˙V˙WS˙P˙Q˙V˙WS˙P˙Q˙V˙WR˙P˙Q˙V˙W
57 1 2 3 4atlem10b KHLPAQASARAVAWA¬S˙P˙Q˙W¬R˙P˙Q˙SS˙P˙Q˙V˙WR˙P˙Q˙V˙WP˙Q˙S˙R=P˙Q˙V˙W
58 39 41 52 56 57 syl31anc KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬S˙P˙Q˙WR˙P˙Q˙V˙WS˙P˙Q˙V˙WP˙Q˙S˙R=P˙Q˙V˙W
59 38 58 eqtr3d KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬S˙P˙Q˙WR˙P˙Q˙V˙WS˙P˙Q˙V˙WP˙Q˙R˙S=P˙Q˙V˙W
60 59 3exp KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬S˙P˙Q˙WR˙P˙Q˙V˙WS˙P˙Q˙V˙WP˙Q˙R˙S=P˙Q˙V˙W
61 simp1 KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RKHLPAQA
62 simp3 KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RPQ¬R˙P˙Q¬S˙P˙Q˙R
63 1 2 3 4atlem3b KHLPAQARASAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙Q˙W¬S˙P˙Q˙W
64 61 6 10 16 62 63 syl131anc KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙Q˙W¬S˙P˙Q˙W
65 34 60 64 mpjaod KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RR˙P˙Q˙V˙WS˙P˙Q˙V˙WP˙Q˙R˙S=P˙Q˙V˙W
66 22 65 sylbird KHLPAQARASAVAWAPQ¬R˙P˙Q¬S˙P˙Q˙RR˙S˙P˙Q˙V˙WP˙Q˙R˙S=P˙Q˙V˙W