Description: Lemma for 4sq . We can express the four-square property more compactly in terms of gaussian integers, because the norms of gaussian integers are exactly sums of two squares. (Contributed by Mario Carneiro, 14-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 4sq.1 | |
|
Assertion | 4sqlem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4sq.1 | |
|
2 | 1 | 4sqlem2 | |
3 | gzreim | |
|
4 | 3 | adantr | |
5 | gzreim | |
|
6 | 5 | adantl | |
7 | gzcn | |
|
8 | 3 7 | syl | |
9 | 8 | absvalsq2d | |
10 | zre | |
|
11 | zre | |
|
12 | crre | |
|
13 | 10 11 12 | syl2an | |
14 | 13 | oveq1d | |
15 | crim | |
|
16 | 10 11 15 | syl2an | |
17 | 16 | oveq1d | |
18 | 14 17 | oveq12d | |
19 | 9 18 | eqtrd | |
20 | gzcn | |
|
21 | 5 20 | syl | |
22 | 21 | absvalsq2d | |
23 | zre | |
|
24 | zre | |
|
25 | crre | |
|
26 | 23 24 25 | syl2an | |
27 | 26 | oveq1d | |
28 | crim | |
|
29 | 23 24 28 | syl2an | |
30 | 29 | oveq1d | |
31 | 27 30 | oveq12d | |
32 | 22 31 | eqtrd | |
33 | 19 32 | oveqan12d | |
34 | 33 | eqcomd | |
35 | fveq2 | |
|
36 | 35 | oveq1d | |
37 | 36 | oveq1d | |
38 | 37 | eqeq2d | |
39 | fveq2 | |
|
40 | 39 | oveq1d | |
41 | 40 | oveq2d | |
42 | 41 | eqeq2d | |
43 | 38 42 | rspc2ev | |
44 | 4 6 34 43 | syl3anc | |
45 | eqeq1 | |
|
46 | 45 | 2rexbidv | |
47 | 44 46 | syl5ibrcom | |
48 | 47 | rexlimdvva | |
49 | 48 | rexlimivv | |
50 | 2 49 | sylbi | |
51 | 1 | 4sqlem4a | |
52 | eleq1a | |
|
53 | 51 52 | syl | |
54 | 53 | rexlimivv | |
55 | 50 54 | impbii | |