Metamath Proof Explorer


Theorem 60gcd7e1

Description: The gcd of 60 and 7 is 1. (Contributed by metakunt, 25-Apr-2024)

Ref Expression
Assertion 60gcd7e1 60gcd7=1

Proof

Step Hyp Ref Expression
1 7nn 7
2 6nn 6
3 2 decnncl2 60
4 1 3 gcdcomnni 7gcd60=60gcd7
5 1nn0 10
6 1nn 1
7 5 6 decnncl 11
8 1 nnzi 7
9 1 7 8 gcdaddmzz2nni 7gcd11=7gcd11+77
10 7t7e49 77=49
11 10 oveq2i 11+77=11+49
12 4nn0 40
13 9nn0 90
14 eqid 11=11
15 eqid 49=49
16 4cn 4
17 ax-1cn 1
18 4p1e5 4+1=5
19 16 17 18 addcomli 1+4=5
20 19 oveq1i 1+4+1=5+1
21 5p1e6 5+1=6
22 20 21 eqtri 1+4+1=6
23 9cn 9
24 9p1e10 9+1=10
25 23 17 24 addcomli 1+9=10
26 5 5 12 13 14 15 22 25 decaddc2 11+49=60
27 11 26 eqtri 11+77=60
28 27 oveq2i 7gcd11+77=7gcd60
29 9 28 eqtri 7gcd11=7gcd60
30 7re 7
31 1 nnnn0i 70
32 31 dec0h 7=07
33 0nn0 00
34 7lt9 7<9
35 9re 9
36 30 35 pm3.2i 79
37 ltle 797<979
38 36 37 ax-mp 7<979
39 34 38 ax-mp 79
40 0lt1 0<1
41 33 5 31 5 39 40 declth 07<11
42 32 41 eqbrtri 7<11
43 ltne 77<11117
44 30 42 43 mp2an 117
45 necom 711117
46 44 45 mpbir 711
47 7prm 7
48 11prm 11
49 prmrp 7117gcd11=1711
50 47 48 49 mp2an 7gcd11=1711
51 46 50 mpbir 7gcd11=1
52 29 51 eqtr3i 7gcd60=1
53 4 52 eqtr3i 60gcd7=1