Description: Abelian group addition/subtraction law. (Contributed by NM, 31-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ablsubadd.b | |
|
ablsubadd.p | |
||
ablsubadd.m | |
||
Assertion | abladdsub4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablsubadd.b | |
|
2 | ablsubadd.p | |
|
3 | ablsubadd.m | |
|
4 | ablgrp | |
|
5 | 4 | 3ad2ant1 | |
6 | simp2l | |
|
7 | simp2r | |
|
8 | 1 2 | grpcl | |
9 | 5 6 7 8 | syl3anc | |
10 | simp3l | |
|
11 | simp3r | |
|
12 | 1 2 | grpcl | |
13 | 5 10 11 12 | syl3anc | |
14 | 1 2 | grpcl | |
15 | 5 10 7 14 | syl3anc | |
16 | 1 3 | grpsubrcan | |
17 | 5 9 13 15 16 | syl13anc | |
18 | simp1 | |
|
19 | 1 2 3 | ablsub4 | |
20 | 18 6 7 10 7 19 | syl122anc | |
21 | eqid | |
|
22 | 1 21 3 | grpsubid | |
23 | 5 7 22 | syl2anc | |
24 | 23 | oveq2d | |
25 | 1 3 | grpsubcl | |
26 | 5 6 10 25 | syl3anc | |
27 | 1 2 21 | grprid | |
28 | 5 26 27 | syl2anc | |
29 | 20 24 28 | 3eqtrd | |
30 | 1 2 3 | ablsub4 | |
31 | 18 10 11 10 7 30 | syl122anc | |
32 | 1 21 3 | grpsubid | |
33 | 5 10 32 | syl2anc | |
34 | 33 | oveq1d | |
35 | 1 3 | grpsubcl | |
36 | 5 11 7 35 | syl3anc | |
37 | 1 2 21 | grplid | |
38 | 5 36 37 | syl2anc | |
39 | 31 34 38 | 3eqtrd | |
40 | 29 39 | eqeq12d | |
41 | 17 40 | bitr3d | |