Metamath Proof Explorer


Theorem abladdsub4

Description: Abelian group addition/subtraction law. (Contributed by NM, 31-Mar-2014)

Ref Expression
Hypotheses ablsubadd.b B=BaseG
ablsubadd.p +˙=+G
ablsubadd.m -˙=-G
Assertion abladdsub4 GAbelXBYBZBWBX+˙Y=Z+˙WX-˙Z=W-˙Y

Proof

Step Hyp Ref Expression
1 ablsubadd.b B=BaseG
2 ablsubadd.p +˙=+G
3 ablsubadd.m -˙=-G
4 ablgrp GAbelGGrp
5 4 3ad2ant1 GAbelXBYBZBWBGGrp
6 simp2l GAbelXBYBZBWBXB
7 simp2r GAbelXBYBZBWBYB
8 1 2 grpcl GGrpXBYBX+˙YB
9 5 6 7 8 syl3anc GAbelXBYBZBWBX+˙YB
10 simp3l GAbelXBYBZBWBZB
11 simp3r GAbelXBYBZBWBWB
12 1 2 grpcl GGrpZBWBZ+˙WB
13 5 10 11 12 syl3anc GAbelXBYBZBWBZ+˙WB
14 1 2 grpcl GGrpZBYBZ+˙YB
15 5 10 7 14 syl3anc GAbelXBYBZBWBZ+˙YB
16 1 3 grpsubrcan GGrpX+˙YBZ+˙WBZ+˙YBX+˙Y-˙Z+˙Y=Z+˙W-˙Z+˙YX+˙Y=Z+˙W
17 5 9 13 15 16 syl13anc GAbelXBYBZBWBX+˙Y-˙Z+˙Y=Z+˙W-˙Z+˙YX+˙Y=Z+˙W
18 simp1 GAbelXBYBZBWBGAbel
19 1 2 3 ablsub4 GAbelXBYBZBYBX+˙Y-˙Z+˙Y=X-˙Z+˙Y-˙Y
20 18 6 7 10 7 19 syl122anc GAbelXBYBZBWBX+˙Y-˙Z+˙Y=X-˙Z+˙Y-˙Y
21 eqid 0G=0G
22 1 21 3 grpsubid GGrpYBY-˙Y=0G
23 5 7 22 syl2anc GAbelXBYBZBWBY-˙Y=0G
24 23 oveq2d GAbelXBYBZBWBX-˙Z+˙Y-˙Y=X-˙Z+˙0G
25 1 3 grpsubcl GGrpXBZBX-˙ZB
26 5 6 10 25 syl3anc GAbelXBYBZBWBX-˙ZB
27 1 2 21 grprid GGrpX-˙ZBX-˙Z+˙0G=X-˙Z
28 5 26 27 syl2anc GAbelXBYBZBWBX-˙Z+˙0G=X-˙Z
29 20 24 28 3eqtrd GAbelXBYBZBWBX+˙Y-˙Z+˙Y=X-˙Z
30 1 2 3 ablsub4 GAbelZBWBZBYBZ+˙W-˙Z+˙Y=Z-˙Z+˙W-˙Y
31 18 10 11 10 7 30 syl122anc GAbelXBYBZBWBZ+˙W-˙Z+˙Y=Z-˙Z+˙W-˙Y
32 1 21 3 grpsubid GGrpZBZ-˙Z=0G
33 5 10 32 syl2anc GAbelXBYBZBWBZ-˙Z=0G
34 33 oveq1d GAbelXBYBZBWBZ-˙Z+˙W-˙Y=0G+˙W-˙Y
35 1 3 grpsubcl GGrpWBYBW-˙YB
36 5 11 7 35 syl3anc GAbelXBYBZBWBW-˙YB
37 1 2 21 grplid GGrpW-˙YB0G+˙W-˙Y=W-˙Y
38 5 36 37 syl2anc GAbelXBYBZBWB0G+˙W-˙Y=W-˙Y
39 31 34 38 3eqtrd GAbelXBYBZBWBZ+˙W-˙Z+˙Y=W-˙Y
40 29 39 eqeq12d GAbelXBYBZBWBX+˙Y-˙Z+˙Y=Z+˙W-˙Z+˙YX-˙Z=W-˙Y
41 17 40 bitr3d GAbelXBYBZBWBX+˙Y=Z+˙WX-˙Z=W-˙Y