| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ablsubadd.b |
|
| 2 |
|
ablsubadd.p |
|
| 3 |
|
ablsubadd.m |
|
| 4 |
|
ablgrp |
|
| 5 |
4
|
3ad2ant1 |
|
| 6 |
|
simp2l |
|
| 7 |
|
simp2r |
|
| 8 |
1 2
|
grpcl |
|
| 9 |
5 6 7 8
|
syl3anc |
|
| 10 |
|
simp3l |
|
| 11 |
|
simp3r |
|
| 12 |
1 2
|
grpcl |
|
| 13 |
5 10 11 12
|
syl3anc |
|
| 14 |
|
eqid |
|
| 15 |
1 2 14 3
|
grpsubval |
|
| 16 |
9 13 15
|
syl2anc |
|
| 17 |
|
ablcmn |
|
| 18 |
17
|
3ad2ant1 |
|
| 19 |
|
simp2 |
|
| 20 |
1 14
|
grpinvcl |
|
| 21 |
5 10 20
|
syl2anc |
|
| 22 |
1 14
|
grpinvcl |
|
| 23 |
5 11 22
|
syl2anc |
|
| 24 |
1 2
|
cmn4 |
|
| 25 |
18 19 21 23 24
|
syl112anc |
|
| 26 |
|
simp1 |
|
| 27 |
1 2 14
|
ablinvadd |
|
| 28 |
26 10 11 27
|
syl3anc |
|
| 29 |
28
|
oveq2d |
|
| 30 |
1 2 14 3
|
grpsubval |
|
| 31 |
6 10 30
|
syl2anc |
|
| 32 |
1 2 14 3
|
grpsubval |
|
| 33 |
7 11 32
|
syl2anc |
|
| 34 |
31 33
|
oveq12d |
|
| 35 |
25 29 34
|
3eqtr4d |
|
| 36 |
16 35
|
eqtrd |
|