Description: Bound on the absolute value of a real number rounded to the nearest integer. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 14-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | absrdbnd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | halfre | |
|
2 | readdcl | |
|
3 | 1 2 | mpan2 | |
4 | reflcl | |
|
5 | 3 4 | syl | |
6 | 5 | recnd | |
7 | abscl | |
|
8 | 6 7 | syl | |
9 | recn | |
|
10 | abscl | |
|
11 | 9 10 | syl | |
12 | 1re | |
|
13 | 12 | a1i | |
14 | 8 11 | resubcld | |
15 | resubcl | |
|
16 | 5 15 | mpancom | |
17 | 16 | recnd | |
18 | abscl | |
|
19 | 17 18 | syl | |
20 | abs2dif | |
|
21 | 6 9 20 | syl2anc | |
22 | 1 | a1i | |
23 | rddif | |
|
24 | halflt1 | |
|
25 | 1 12 24 | ltleii | |
26 | 25 | a1i | |
27 | 19 22 13 23 26 | letrd | |
28 | 14 19 13 21 27 | letrd | |
29 | 8 11 13 28 | subled | |
30 | 3 | flcld | |
31 | nn0abscl | |
|
32 | 30 31 | syl | |
33 | 32 | nn0zd | |
34 | peano2zm | |
|
35 | 33 34 | syl | |
36 | flge | |
|
37 | 11 35 36 | syl2anc | |
38 | 29 37 | mpbid | |
39 | reflcl | |
|
40 | 11 39 | syl | |
41 | 8 13 40 | lesubaddd | |
42 | 38 41 | mpbid | |