Metamath Proof Explorer


Theorem absrdbnd

Description: Bound on the absolute value of a real number rounded to the nearest integer. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 14-Sep-2015)

Ref Expression
Assertion absrdbnd AA+12A+1

Proof

Step Hyp Ref Expression
1 halfre 12
2 readdcl A12A+12
3 1 2 mpan2 AA+12
4 reflcl A+12A+12
5 3 4 syl AA+12
6 5 recnd AA+12
7 abscl A+12A+12
8 6 7 syl AA+12
9 recn AA
10 abscl AA
11 9 10 syl AA
12 1re 1
13 12 a1i A1
14 8 11 resubcld AA+12A
15 resubcl A+12AA+12A
16 5 15 mpancom AA+12A
17 16 recnd AA+12A
18 abscl A+12AA+12A
19 17 18 syl AA+12A
20 abs2dif A+12AA+12AA+12A
21 6 9 20 syl2anc AA+12AA+12A
22 1 a1i A12
23 rddif AA+12A12
24 halflt1 12<1
25 1 12 24 ltleii 121
26 25 a1i A121
27 19 22 13 23 26 letrd AA+12A1
28 14 19 13 21 27 letrd AA+12A1
29 8 11 13 28 subled AA+121A
30 3 flcld AA+12
31 nn0abscl A+12A+120
32 30 31 syl AA+120
33 32 nn0zd AA+12
34 peano2zm A+12A+121
35 33 34 syl AA+121
36 flge AA+121A+121AA+121A
37 11 35 36 syl2anc AA+121AA+121A
38 29 37 mpbid AA+121A
39 reflcl AA
40 11 39 syl AA
41 8 13 40 lesubaddd AA+121AA+12A+1
42 38 41 mpbid AA+12A+1