Metamath Proof Explorer


Theorem absrdbnd

Description: Bound on the absolute value of a real number rounded to the nearest integer. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 14-Sep-2015)

Ref Expression
Assertion absrdbnd A A + 1 2 A + 1

Proof

Step Hyp Ref Expression
1 halfre 1 2
2 readdcl A 1 2 A + 1 2
3 1 2 mpan2 A A + 1 2
4 reflcl A + 1 2 A + 1 2
5 3 4 syl A A + 1 2
6 5 recnd A A + 1 2
7 abscl A + 1 2 A + 1 2
8 6 7 syl A A + 1 2
9 recn A A
10 abscl A A
11 9 10 syl A A
12 1re 1
13 12 a1i A 1
14 8 11 resubcld A A + 1 2 A
15 resubcl A + 1 2 A A + 1 2 A
16 5 15 mpancom A A + 1 2 A
17 16 recnd A A + 1 2 A
18 abscl A + 1 2 A A + 1 2 A
19 17 18 syl A A + 1 2 A
20 abs2dif A + 1 2 A A + 1 2 A A + 1 2 A
21 6 9 20 syl2anc A A + 1 2 A A + 1 2 A
22 1 a1i A 1 2
23 rddif A A + 1 2 A 1 2
24 halflt1 1 2 < 1
25 1 12 24 ltleii 1 2 1
26 25 a1i A 1 2 1
27 19 22 13 23 26 letrd A A + 1 2 A 1
28 14 19 13 21 27 letrd A A + 1 2 A 1
29 8 11 13 28 subled A A + 1 2 1 A
30 3 flcld A A + 1 2
31 nn0abscl A + 1 2 A + 1 2 0
32 30 31 syl A A + 1 2 0
33 32 nn0zd A A + 1 2
34 peano2zm A + 1 2 A + 1 2 1
35 33 34 syl A A + 1 2 1
36 flge A A + 1 2 1 A + 1 2 1 A A + 1 2 1 A
37 11 35 36 syl2anc A A + 1 2 1 A A + 1 2 1 A
38 29 37 mpbid A A + 1 2 1 A
39 reflcl A A
40 11 39 syl A A
41 8 13 40 lesubaddd A A + 1 2 1 A A + 1 2 A + 1
42 38 41 mpbid A A + 1 2 A + 1