Metamath Proof Explorer


Theorem abssinper

Description: The absolute value of sine has period _pi . (Contributed by NM, 17-Aug-2008)

Ref Expression
Assertion abssinper AKsinA+Kπ=sinA

Proof

Step Hyp Ref Expression
1 zcn KK
2 halfcl KK2
3 2cn 2
4 picn π
5 mulass K22πK22π=K22π
6 3 4 5 mp3an23 K2K22π=K22π
7 2 6 syl KK22π=K22π
8 2ne0 20
9 divcan1 K220K22=K
10 3 8 9 mp3an23 KK22=K
11 10 oveq1d KK22π=Kπ
12 7 11 eqtr3d KK22π=Kπ
13 1 12 syl KK22π=Kπ
14 13 adantl AKK22π=Kπ
15 14 oveq2d AKA+K22π=A+Kπ
16 15 fveq2d AKsinA+K22π=sinA+Kπ
17 16 eqcomd AKsinA+Kπ=sinA+K22π
18 17 adantr AKK2sinA+Kπ=sinA+K22π
19 sinper AK2sinA+K22π=sinA
20 19 adantlr AKK2sinA+K22π=sinA
21 18 20 eqtrd AKK2sinA+Kπ=sinA
22 21 fveq2d AKK2sinA+Kπ=sinA
23 peano2cn KK+1
24 halfcl K+1K+12
25 23 24 syl KK+12
26 3 4 mulcli 2π
27 mulcl K+122πK+122π
28 25 26 27 sylancl KK+122π
29 subadd23 AπK+122πA-π+K+122π=A+K+122π-π
30 4 29 mp3an2 AK+122πA-π+K+122π=A+K+122π-π
31 28 30 sylan2 AKA-π+K+122π=A+K+122π-π
32 divcan1 K+1220K+122=K+1
33 3 8 32 mp3an23 K+1K+122=K+1
34 23 33 syl KK+122=K+1
35 34 oveq1d KK+122π=K+1π
36 ax-1cn 1
37 adddir K1πK+1π=Kπ+1π
38 36 4 37 mp3an23 KK+1π=Kπ+1π
39 35 38 eqtrd KK+122π=Kπ+1π
40 4 mullidi 1π=π
41 40 oveq2i Kπ+1π=Kπ+π
42 39 41 eqtr2di KKπ+π=K+122π
43 mulass K+122πK+122π=K+122π
44 3 4 43 mp3an23 K+12K+122π=K+122π
45 25 44 syl KK+122π=K+122π
46 42 45 eqtr2d KK+122π=Kπ+π
47 46 oveq1d KK+122ππ=Kπ+π-π
48 mulcl KπKπ
49 4 48 mpan2 KKπ
50 pncan KππKπ+π-π=Kπ
51 49 4 50 sylancl KKπ+π-π=Kπ
52 47 51 eqtrd KK+122ππ=Kπ
53 52 adantl AKK+122ππ=Kπ
54 53 oveq2d AKA+K+122π-π=A+Kπ
55 31 54 eqtr2d AKA+Kπ=A-π+K+122π
56 1 55 sylan2 AKA+Kπ=A-π+K+122π
57 56 fveq2d AKsinA+Kπ=sinA-π+K+122π
58 57 adantr AKK+12sinA+Kπ=sinA-π+K+122π
59 subcl AπAπ
60 4 59 mpan2 AAπ
61 sinper AπK+12sinA-π+K+122π=sinAπ
62 60 61 sylan AK+12sinA-π+K+122π=sinAπ
63 62 adantlr AKK+12sinA-π+K+122π=sinAπ
64 sinmpi AsinAπ=sinA
65 64 ad2antrr AKK+12sinAπ=sinA
66 63 65 eqtrd AKK+12sinA-π+K+122π=sinA
67 58 66 eqtrd AKK+12sinA+Kπ=sinA
68 67 fveq2d AKK+12sinA+Kπ=sinA
69 sincl AsinA
70 69 absnegd AsinA=sinA
71 70 ad2antrr AKK+12sinA=sinA
72 68 71 eqtrd AKK+12sinA+Kπ=sinA
73 zeo KK2K+12
74 73 adantl AKK2K+12
75 22 72 74 mpjaodan AKsinA+Kπ=sinA