| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negscl |  | 
						
							| 2 | 1 | ad2antrr |  | 
						
							| 3 |  | absscl |  | 
						
							| 4 | 1 3 | syl |  | 
						
							| 5 | 4 | ad2antrr |  | 
						
							| 6 |  | simplr |  | 
						
							| 7 |  | sleabs |  | 
						
							| 8 | 1 7 | syl |  | 
						
							| 9 | 8 | ad2antrr |  | 
						
							| 10 |  | abssneg |  | 
						
							| 11 | 10 | adantr |  | 
						
							| 12 | 11 | breq1d |  | 
						
							| 13 | 12 | biimpar |  | 
						
							| 14 | 2 5 6 9 13 | slelttrd |  | 
						
							| 15 |  | simpll |  | 
						
							| 16 |  | absscl |  | 
						
							| 17 | 16 | ad2antrr |  | 
						
							| 18 |  | sleabs |  | 
						
							| 19 | 18 | ad2antrr |  | 
						
							| 20 |  | simpr |  | 
						
							| 21 | 15 17 6 19 20 | slelttrd |  | 
						
							| 22 | 14 21 | jca |  | 
						
							| 23 | 22 | ex |  | 
						
							| 24 |  | abssor |  | 
						
							| 25 | 24 | adantr |  | 
						
							| 26 |  | breq1 |  | 
						
							| 27 | 26 | biimprd |  | 
						
							| 28 |  | breq1 |  | 
						
							| 29 | 28 | biimprd |  | 
						
							| 30 | 27 29 | jaoa |  | 
						
							| 31 | 30 | ancomsd |  | 
						
							| 32 | 25 31 | syl |  | 
						
							| 33 | 23 32 | impbid |  | 
						
							| 34 | 1 | adantr |  | 
						
							| 35 |  | simpr |  | 
						
							| 36 | 34 35 | sltnegd |  | 
						
							| 37 |  | negnegs |  | 
						
							| 38 | 37 | adantr |  | 
						
							| 39 | 38 | breq2d |  | 
						
							| 40 | 36 39 | bitrd |  | 
						
							| 41 | 40 | anbi1d |  | 
						
							| 42 | 33 41 | bitrd |  |