Description: The Ackermann bijection, part 1: each natural number can be uniquely coded in binary as a finite set of natural numbers and conversely. (Contributed by Stefan O'Rear, 18-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ackbij.f | |
|
Assertion | ackbij1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ackbij.f | |
|
2 | 1 | ackbij1lem17 | |
3 | f1f | |
|
4 | frn | |
|
5 | 2 3 4 | mp2b | |
6 | eleq1 | |
|
7 | eleq1 | |
|
8 | eleq1 | |
|
9 | peano1 | |
|
10 | ackbij1lem3 | |
|
11 | 9 10 | ax-mp | |
12 | 1 | ackbij1lem13 | |
13 | fveqeq2 | |
|
14 | 13 | rspcev | |
15 | 11 12 14 | mp2an | |
16 | f1fn | |
|
17 | 2 16 | ax-mp | |
18 | fvelrnb | |
|
19 | 17 18 | ax-mp | |
20 | 15 19 | mpbir | |
21 | 1 | ackbij1lem18 | |
22 | 21 | adantl | |
23 | suceq | |
|
24 | 23 | eqeq2d | |
25 | 24 | rexbidv | |
26 | 22 25 | syl5ibcom | |
27 | 26 | rexlimdva | |
28 | fvelrnb | |
|
29 | 17 28 | ax-mp | |
30 | fvelrnb | |
|
31 | 17 30 | ax-mp | |
32 | 27 29 31 | 3imtr4g | |
33 | 6 7 8 7 20 32 | finds | |
34 | 33 | ssriv | |
35 | 5 34 | eqssi | |
36 | dff1o5 | |
|
37 | 2 35 36 | mpbir2an | |