Metamath Proof Explorer


Theorem acunirnmpt2f

Description: Axiom of choice for the union of the range of a mapping to function. (Contributed by Thierry Arnoux, 7-Nov-2019)

Ref Expression
Hypotheses acunirnmpt.0 φAV
acunirnmpt.1 φjAB
aciunf1lem.a _jA
acunirnmpt2f.c _jC
acunirnmpt2f.d _jD
acunirnmpt2f.2 C=jAB
acunirnmpt2f.3 j=fxB=D
acunirnmpt2f.4 φjABW
Assertion acunirnmpt2f φff:CAxCxD

Proof

Step Hyp Ref Expression
1 acunirnmpt.0 φAV
2 acunirnmpt.1 φjAB
3 aciunf1lem.a _jA
4 acunirnmpt2f.c _jC
5 acunirnmpt2f.d _jD
6 acunirnmpt2f.2 C=jAB
7 acunirnmpt2f.3 j=fxB=D
8 acunirnmpt2f.4 φjABW
9 simplr φxCyranjABxyyranjAB
10 vex yV
11 eqid jAB=jAB
12 11 elrnmpt yVyranjABjAy=B
13 10 12 ax-mp yranjABjAy=B
14 9 13 sylib φxCyranjABxyjAy=B
15 nfv jφ
16 4 nfcri jxC
17 15 16 nfan jφxC
18 nfcv _jy
19 nfmpt1 _jjAB
20 19 nfrn _jranjAB
21 18 20 nfel jyranjAB
22 17 21 nfan jφxCyranjAB
23 nfv jxy
24 22 23 nfan jφxCyranjABxy
25 simpllr φxCyranjABxyjAy=Bxy
26 simpr φxCyranjABxyjAy=By=B
27 25 26 eleqtrd φxCyranjABxyjAy=BxB
28 27 ex φxCyranjABxyjAy=BxB
29 28 ex φxCyranjABxyjAy=BxB
30 24 29 reximdai φxCyranjABxyjAy=BjAxB
31 14 30 mpd φxCyranjABxyjAxB
32 8 ralrimiva φjABW
33 dfiun3g jABWjAB=ranjAB
34 32 33 syl φjAB=ranjAB
35 6 34 eqtrid φC=ranjAB
36 35 eleq2d φxCxranjAB
37 36 biimpa φxCxranjAB
38 eluni2 xranjAByranjABxy
39 37 38 sylib φxCyranjABxy
40 31 39 r19.29a φxCjAxB
41 40 ralrimiva φxCjAxB
42 nfcv _kA
43 nfcv _kB
44 nfcsb1v _jk/jB
45 csbeq1a j=kB=k/jB
46 3 42 43 44 45 cbvmptf jAB=kAk/jB
47 mptexg AVkAk/jBV
48 46 47 eqeltrid AVjABV
49 rnexg jABVranjABV
50 uniexg ranjABVranjABV
51 1 48 49 50 4syl φranjABV
52 35 51 eqeltrd φCV
53 id c=Cc=C
54 53 raleqdv c=CxcjAxBxCjAxB
55 53 feq2d c=Cf:cAf:CA
56 53 raleqdv c=CxcxDxCxD
57 55 56 anbi12d c=Cf:cAxcxDf:CAxCxD
58 57 exbidv c=Cff:cAxcxDff:CAxCxD
59 54 58 imbi12d c=CxcjAxBff:cAxcxDxCjAxBff:CAxCxD
60 5 nfcri jxD
61 vex cV
62 7 eleq2d j=fxxBxD
63 3 60 61 62 ac6sf2 xcjAxBff:cAxcxD
64 59 63 vtoclg CVxCjAxBff:CAxCxD
65 52 64 syl φxCjAxBff:CAxCxD
66 41 65 mpd φff:CAxCxD