Metamath Proof Explorer


Theorem acunirnmpt2f

Description: Axiom of choice for the union of the range of a mapping to function. (Contributed by Thierry Arnoux, 7-Nov-2019)

Ref Expression
Hypotheses acunirnmpt.0 φ A V
acunirnmpt.1 φ j A B
aciunf1lem.a _ j A
acunirnmpt2f.c _ j C
acunirnmpt2f.d _ j D
acunirnmpt2f.2 C = j A B
acunirnmpt2f.3 j = f x B = D
acunirnmpt2f.4 φ j A B W
Assertion acunirnmpt2f φ f f : C A x C x D

Proof

Step Hyp Ref Expression
1 acunirnmpt.0 φ A V
2 acunirnmpt.1 φ j A B
3 aciunf1lem.a _ j A
4 acunirnmpt2f.c _ j C
5 acunirnmpt2f.d _ j D
6 acunirnmpt2f.2 C = j A B
7 acunirnmpt2f.3 j = f x B = D
8 acunirnmpt2f.4 φ j A B W
9 simplr φ x C y ran j A B x y y ran j A B
10 vex y V
11 eqid j A B = j A B
12 11 elrnmpt y V y ran j A B j A y = B
13 10 12 ax-mp y ran j A B j A y = B
14 9 13 sylib φ x C y ran j A B x y j A y = B
15 nfv j φ
16 4 nfcri j x C
17 15 16 nfan j φ x C
18 nfcv _ j y
19 nfmpt1 _ j j A B
20 19 nfrn _ j ran j A B
21 18 20 nfel j y ran j A B
22 17 21 nfan j φ x C y ran j A B
23 nfv j x y
24 22 23 nfan j φ x C y ran j A B x y
25 simpllr φ x C y ran j A B x y j A y = B x y
26 simpr φ x C y ran j A B x y j A y = B y = B
27 25 26 eleqtrd φ x C y ran j A B x y j A y = B x B
28 27 ex φ x C y ran j A B x y j A y = B x B
29 28 ex φ x C y ran j A B x y j A y = B x B
30 24 29 reximdai φ x C y ran j A B x y j A y = B j A x B
31 14 30 mpd φ x C y ran j A B x y j A x B
32 8 ralrimiva φ j A B W
33 dfiun3g j A B W j A B = ran j A B
34 32 33 syl φ j A B = ran j A B
35 6 34 syl5eq φ C = ran j A B
36 35 eleq2d φ x C x ran j A B
37 36 biimpa φ x C x ran j A B
38 eluni2 x ran j A B y ran j A B x y
39 37 38 sylib φ x C y ran j A B x y
40 31 39 r19.29a φ x C j A x B
41 40 ralrimiva φ x C j A x B
42 nfcv _ k A
43 nfcv _ k B
44 nfcsb1v _ j k / j B
45 csbeq1a j = k B = k / j B
46 3 42 43 44 45 cbvmptf j A B = k A k / j B
47 mptexg A V k A k / j B V
48 46 47 eqeltrid A V j A B V
49 rnexg j A B V ran j A B V
50 uniexg ran j A B V ran j A B V
51 1 48 49 50 4syl φ ran j A B V
52 35 51 eqeltrd φ C V
53 id c = C c = C
54 53 raleqdv c = C x c j A x B x C j A x B
55 53 feq2d c = C f : c A f : C A
56 53 raleqdv c = C x c x D x C x D
57 55 56 anbi12d c = C f : c A x c x D f : C A x C x D
58 57 exbidv c = C f f : c A x c x D f f : C A x C x D
59 54 58 imbi12d c = C x c j A x B f f : c A x c x D x C j A x B f f : C A x C x D
60 5 nfcri j x D
61 vex c V
62 7 eleq2d j = f x x B x D
63 3 60 61 62 ac6sf2 x c j A x B f f : c A x c x D
64 59 63 vtoclg C V x C j A x B f f : C A x C x D
65 52 64 syl φ x C j A x B f f : C A x C x D
66 41 65 mpd φ f f : C A x C x D