Step |
Hyp |
Ref |
Expression |
1 |
|
acunirnmpt.0 |
|
2 |
|
acunirnmpt.1 |
|
3 |
|
aciunf1lem.a |
|
4 |
|
acunirnmpt2f.c |
|
5 |
|
acunirnmpt2f.d |
|
6 |
|
acunirnmpt2f.2 |
|
7 |
|
acunirnmpt2f.3 |
|
8 |
|
acunirnmpt2f.4 |
|
9 |
|
simplr |
|
10 |
|
vex |
|
11 |
|
eqid |
|
12 |
11
|
elrnmpt |
|
13 |
10 12
|
ax-mp |
|
14 |
9 13
|
sylib |
|
15 |
|
nfv |
|
16 |
4
|
nfcri |
|
17 |
15 16
|
nfan |
|
18 |
|
nfcv |
|
19 |
|
nfmpt1 |
|
20 |
19
|
nfrn |
|
21 |
18 20
|
nfel |
|
22 |
17 21
|
nfan |
|
23 |
|
nfv |
|
24 |
22 23
|
nfan |
|
25 |
|
simpllr |
|
26 |
|
simpr |
|
27 |
25 26
|
eleqtrd |
|
28 |
27
|
ex |
|
29 |
28
|
ex |
|
30 |
24 29
|
reximdai |
|
31 |
14 30
|
mpd |
|
32 |
8
|
ralrimiva |
|
33 |
|
dfiun3g |
|
34 |
32 33
|
syl |
|
35 |
6 34
|
eqtrid |
|
36 |
35
|
eleq2d |
|
37 |
36
|
biimpa |
|
38 |
|
eluni2 |
|
39 |
37 38
|
sylib |
|
40 |
31 39
|
r19.29a |
|
41 |
40
|
ralrimiva |
|
42 |
|
nfcv |
|
43 |
|
nfcv |
|
44 |
|
nfcsb1v |
|
45 |
|
csbeq1a |
|
46 |
3 42 43 44 45
|
cbvmptf |
|
47 |
|
mptexg |
|
48 |
46 47
|
eqeltrid |
|
49 |
|
rnexg |
|
50 |
|
uniexg |
|
51 |
1 48 49 50
|
4syl |
|
52 |
35 51
|
eqeltrd |
|
53 |
|
id |
|
54 |
53
|
raleqdv |
|
55 |
53
|
feq2d |
|
56 |
53
|
raleqdv |
|
57 |
55 56
|
anbi12d |
|
58 |
57
|
exbidv |
|
59 |
54 58
|
imbi12d |
|
60 |
5
|
nfcri |
|
61 |
|
vex |
|
62 |
7
|
eleq2d |
|
63 |
3 60 61 62
|
ac6sf2 |
|
64 |
59 63
|
vtoclg |
|
65 |
52 64
|
syl |
|
66 |
41 65
|
mpd |
|