Description: Axiom of choice for the union of the range of a mapping to function. (Contributed by Thierry Arnoux, 7-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | acunirnmpt.0 | |
|
acunirnmpt.1 | |
||
aciunf1lem.a | |
||
acunirnmpt2f.c | |
||
acunirnmpt2f.d | |
||
acunirnmpt2f.2 | |
||
acunirnmpt2f.3 | |
||
acunirnmpt2f.4 | |
||
Assertion | acunirnmpt2f | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acunirnmpt.0 | |
|
2 | acunirnmpt.1 | |
|
3 | aciunf1lem.a | |
|
4 | acunirnmpt2f.c | |
|
5 | acunirnmpt2f.d | |
|
6 | acunirnmpt2f.2 | |
|
7 | acunirnmpt2f.3 | |
|
8 | acunirnmpt2f.4 | |
|
9 | simplr | |
|
10 | vex | |
|
11 | eqid | |
|
12 | 11 | elrnmpt | |
13 | 10 12 | ax-mp | |
14 | 9 13 | sylib | |
15 | nfv | |
|
16 | 4 | nfcri | |
17 | 15 16 | nfan | |
18 | nfcv | |
|
19 | nfmpt1 | |
|
20 | 19 | nfrn | |
21 | 18 20 | nfel | |
22 | 17 21 | nfan | |
23 | nfv | |
|
24 | 22 23 | nfan | |
25 | simpllr | |
|
26 | simpr | |
|
27 | 25 26 | eleqtrd | |
28 | 27 | ex | |
29 | 28 | ex | |
30 | 24 29 | reximdai | |
31 | 14 30 | mpd | |
32 | 8 | ralrimiva | |
33 | dfiun3g | |
|
34 | 32 33 | syl | |
35 | 6 34 | eqtrid | |
36 | 35 | eleq2d | |
37 | 36 | biimpa | |
38 | eluni2 | |
|
39 | 37 38 | sylib | |
40 | 31 39 | r19.29a | |
41 | 40 | ralrimiva | |
42 | nfcv | |
|
43 | nfcv | |
|
44 | nfcsb1v | |
|
45 | csbeq1a | |
|
46 | 3 42 43 44 45 | cbvmptf | |
47 | mptexg | |
|
48 | 46 47 | eqeltrid | |
49 | rnexg | |
|
50 | uniexg | |
|
51 | 1 48 49 50 | 4syl | |
52 | 35 51 | eqeltrd | |
53 | id | |
|
54 | 53 | raleqdv | |
55 | 53 | feq2d | |
56 | 53 | raleqdv | |
57 | 55 56 | anbi12d | |
58 | 57 | exbidv | |
59 | 54 58 | imbi12d | |
60 | 5 | nfcri | |
61 | vex | |
|
62 | 7 | eleq2d | |
63 | 3 60 61 62 | ac6sf2 | |
64 | 59 63 | vtoclg | |
65 | 52 64 | syl | |
66 | 41 65 | mpd | |