| Step | Hyp | Ref | Expression | 
						
							| 1 |  | affineequiv.a |  | 
						
							| 2 |  | affineequiv.b |  | 
						
							| 3 |  | affineequiv.c |  | 
						
							| 4 |  | affineequiv.d |  | 
						
							| 5 | 4 3 | mulcld |  | 
						
							| 6 | 4 1 | mulcld |  | 
						
							| 7 | 3 5 6 | subsubd |  | 
						
							| 8 | 3 5 | subcld |  | 
						
							| 9 | 8 6 | addcomd |  | 
						
							| 10 | 7 9 | eqtr2d |  | 
						
							| 11 |  | 1cnd |  | 
						
							| 12 | 11 4 3 | subdird |  | 
						
							| 13 | 3 | mullidd |  | 
						
							| 14 | 13 | oveq1d |  | 
						
							| 15 | 12 14 | eqtrd |  | 
						
							| 16 | 15 | oveq2d |  | 
						
							| 17 | 3 2 | subcld |  | 
						
							| 18 | 3 1 | subcld |  | 
						
							| 19 | 4 18 | mulcld |  | 
						
							| 20 | 2 17 19 | addsubassd |  | 
						
							| 21 | 2 3 | pncan3d |  | 
						
							| 22 | 4 3 1 | subdid |  | 
						
							| 23 | 21 22 | oveq12d |  | 
						
							| 24 | 20 23 | eqtr3d |  | 
						
							| 25 | 10 16 24 | 3eqtr4d |  | 
						
							| 26 | 25 | eqeq2d |  | 
						
							| 27 | 2 | addridd |  | 
						
							| 28 | 27 | eqeq1d |  | 
						
							| 29 |  | 0cnd |  | 
						
							| 30 | 17 19 | subcld |  | 
						
							| 31 | 2 29 30 | addcand |  | 
						
							| 32 | 26 28 31 | 3bitr2d |  | 
						
							| 33 |  | eqcom |  | 
						
							| 34 | 32 33 | bitrdi |  | 
						
							| 35 | 17 19 | subeq0ad |  | 
						
							| 36 | 34 35 | bitrd |  |