Metamath Proof Explorer


Theorem ajval

Description: Value of the adjoint function. (Contributed by NM, 25-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses ajval.1 X=BaseSetU
ajval.2 Y=BaseSetW
ajval.3 P=𝑖OLDU
ajval.4 Q=𝑖OLDW
ajval.5 A=UadjW
Assertion ajval UCPreHilOLDWNrmCVecT:XYAT=ιs|s:YXxXyYTxQy=xPsy

Proof

Step Hyp Ref Expression
1 ajval.1 X=BaseSetU
2 ajval.2 Y=BaseSetW
3 ajval.3 P=𝑖OLDU
4 ajval.4 Q=𝑖OLDW
5 ajval.5 A=UadjW
6 phnv UCPreHilOLDUNrmCVec
7 1 2 3 4 5 ajfval UNrmCVecWNrmCVecA=ts|t:XYs:YXxXyYtxQy=xPsy
8 6 7 sylan UCPreHilOLDWNrmCVecA=ts|t:XYs:YXxXyYtxQy=xPsy
9 8 fveq1d UCPreHilOLDWNrmCVecAT=ts|t:XYs:YXxXyYtxQy=xPsyT
10 9 3adant3 UCPreHilOLDWNrmCVecT:XYAT=ts|t:XYs:YXxXyYtxQy=xPsyT
11 1 fvexi XV
12 fex T:XYXVTV
13 11 12 mpan2 T:XYTV
14 eqid ts|t:XYs:YXxXyYtxQy=xPsy=ts|t:XYs:YXxXyYtxQy=xPsy
15 feq1 t=Tt:XYT:XY
16 fveq1 t=Ttx=Tx
17 16 oveq1d t=TtxQy=TxQy
18 17 eqeq1d t=TtxQy=xPsyTxQy=xPsy
19 18 2ralbidv t=TxXyYtxQy=xPsyxXyYTxQy=xPsy
20 15 19 3anbi13d t=Tt:XYs:YXxXyYtxQy=xPsyT:XYs:YXxXyYTxQy=xPsy
21 14 20 fvopab5 TVts|t:XYs:YXxXyYtxQy=xPsyT=ιs|T:XYs:YXxXyYTxQy=xPsy
22 13 21 syl T:XYts|t:XYs:YXxXyYtxQy=xPsyT=ιs|T:XYs:YXxXyYTxQy=xPsy
23 3anass T:XYs:YXxXyYTxQy=xPsyT:XYs:YXxXyYTxQy=xPsy
24 23 baib T:XYT:XYs:YXxXyYTxQy=xPsys:YXxXyYTxQy=xPsy
25 24 iotabidv T:XYιs|T:XYs:YXxXyYTxQy=xPsy=ιs|s:YXxXyYTxQy=xPsy
26 22 25 eqtrd T:XYts|t:XYs:YXxXyYtxQy=xPsyT=ιs|s:YXxXyYTxQy=xPsy
27 26 3ad2ant3 UCPreHilOLDWNrmCVecT:XYts|t:XYs:YXxXyYtxQy=xPsyT=ιs|s:YXxXyYTxQy=xPsy
28 10 27 eqtrd UCPreHilOLDWNrmCVecT:XYAT=ιs|s:YXxXyYTxQy=xPsy