Metamath Proof Explorer


Theorem aomclem4

Description: Lemma for dfac11 . Limit case. Patch together well-orderings constructed so far using fnwe2 to cover the limit rank. (Contributed by Stefan O'Rear, 20-Jan-2015)

Ref Expression
Hypotheses aomclem4.f F=ab|rankaErankbranka=rankbazsucrankab
aomclem4.on φdomzOn
aomclem4.su φdomz=domz
aomclem4.we φadomzzaWeR1a
Assertion aomclem4 φFWeR1domz

Proof

Step Hyp Ref Expression
1 aomclem4.f F=ab|rankaErankbranka=rankbazsucrankab
2 aomclem4.on φdomzOn
3 aomclem4.su φdomz=domz
4 aomclem4.we φadomzzaWeR1a
5 suceq c=rankasucc=sucranka
6 5 fveq2d c=rankazsucc=zsucranka
7 r1fnon R1FnOn
8 fnfun R1FnOnFunR1
9 7 8 ax-mp FunR1
10 7 fndmi domR1=On
11 10 eqimss2i OndomR1
12 9 11 pm3.2i FunR1OndomR1
13 funfvima2 FunR1OndomR1domzOnR1domzR1On
14 12 2 13 mpsyl φR1domzR1On
15 elssuni R1domzR1OnR1domzR1On
16 14 15 syl φR1domzR1On
17 16 sselda φbR1domzbR1On
18 rankidb bR1OnbR1sucrankb
19 17 18 syl φbR1domzbR1sucrankb
20 suceq rankb=rankasucrankb=sucranka
21 20 fveq2d rankb=rankaR1sucrankb=R1sucranka
22 21 eleq2d rankb=rankabR1sucrankbbR1sucranka
23 19 22 syl5ibcom φbR1domzrankb=rankabR1sucranka
24 23 expimpd φbR1domzrankb=rankabR1sucranka
25 24 ss2abdv φb|bR1domzrankb=rankab|bR1sucranka
26 df-rab bR1domz|rankb=ranka=b|bR1domzrankb=ranka
27 abid1 R1sucranka=b|bR1sucranka
28 25 26 27 3sstr4g φbR1domz|rankb=rankaR1sucranka
29 28 adantr φaR1domzbR1domz|rankb=rankaR1sucranka
30 fveq2 b=sucrankazb=zsucranka
31 fveq2 b=sucrankaR1b=R1sucranka
32 30 31 weeq12d b=sucrankazbWeR1bzsucrankaWeR1sucranka
33 fveq2 a=bza=zb
34 fveq2 a=bR1a=R1b
35 33 34 weeq12d a=bzaWeR1azbWeR1b
36 35 cbvralvw adomzzaWeR1abdomzzbWeR1b
37 4 36 sylib φbdomzzbWeR1b
38 37 adantr φaR1domzbdomzzbWeR1b
39 rankr1ai aR1domzrankadomz
40 39 adantl φaR1domzrankadomz
41 eloni domzOnOrddomz
42 2 41 syl φOrddomz
43 limsuc2 Orddomzdomz=domzrankadomzsucrankadomz
44 42 3 43 syl2anc φrankadomzsucrankadomz
45 44 adantr φaR1domzrankadomzsucrankadomz
46 40 45 mpbid φaR1domzsucrankadomz
47 32 38 46 rspcdva φaR1domzzsucrankaWeR1sucranka
48 wess bR1domz|rankb=rankaR1sucrankazsucrankaWeR1sucrankazsucrankaWebR1domz|rankb=ranka
49 29 47 48 sylc φaR1domzzsucrankaWebR1domz|rankb=ranka
50 rankf rank:R1OnOn
51 50 a1i φrank:R1OnOn
52 51 16 fssresd φrankR1domz:R1domzOn
53 epweon EWeOn
54 53 a1i φEWeOn
55 6 1 49 52 54 fnwe2 φFWeR1domz