Metamath Proof Explorer


Theorem aomclem5

Description: Lemma for dfac11 . Combine the successor case with the limit case. (Contributed by Stefan O'Rear, 20-Jan-2015)

Ref Expression
Hypotheses aomclem5.b B=ab|cR1domzcb¬cadR1domzdzdomzcdadb
aomclem5.c C=aVsupyaR1domzB
aomclem5.d D=recsaVCR1domzrana
aomclem5.e E=ab|D-1aD-1b
aomclem5.f F=ab|rankaErankbranka=rankbazsucrankab
aomclem5.g G=ifdomz=domzFER1domz×R1domz
aomclem5.on φdomzOn
aomclem5.we φadomzzaWeR1a
aomclem5.a φAOn
aomclem5.za φdomzA
aomclem5.y φa𝒫R1Aaya𝒫aFin
Assertion aomclem5 φGWeR1domz

Proof

Step Hyp Ref Expression
1 aomclem5.b B=ab|cR1domzcb¬cadR1domzdzdomzcdadb
2 aomclem5.c C=aVsupyaR1domzB
3 aomclem5.d D=recsaVCR1domzrana
4 aomclem5.e E=ab|D-1aD-1b
5 aomclem5.f F=ab|rankaErankbranka=rankbazsucrankab
6 aomclem5.g G=ifdomz=domzFER1domz×R1domz
7 aomclem5.on φdomzOn
8 aomclem5.we φadomzzaWeR1a
9 aomclem5.a φAOn
10 aomclem5.za φdomzA
11 aomclem5.y φa𝒫R1Aaya𝒫aFin
12 7 adantr φdomz=domzdomzOn
13 simpr φdomz=domzdomz=domz
14 8 adantr φdomz=domzadomzzaWeR1a
15 5 12 13 14 aomclem4 φdomz=domzFWeR1domz
16 iftrue domz=domzifdomz=domzFE=F
17 16 adantl φdomz=domzifdomz=domzFE=F
18 eqidd φdomz=domzR1domz=R1domz
19 17 18 weeq12d φdomz=domzifdomz=domzFEWeR1domzFWeR1domz
20 15 19 mpbird φdomz=domzifdomz=domzFEWeR1domz
21 7 adantr φ¬domz=domzdomzOn
22 eloni domzOnOrddomz
23 orduniorsuc Orddomzdomz=domzdomz=sucdomz
24 7 22 23 3syl φdomz=domzdomz=sucdomz
25 24 orcanai φ¬domz=domzdomz=sucdomz
26 8 adantr φ¬domz=domzadomzzaWeR1a
27 9 adantr φ¬domz=domzAOn
28 10 adantr φ¬domz=domzdomzA
29 11 adantr φ¬domz=domza𝒫R1Aaya𝒫aFin
30 1 2 3 4 21 25 26 27 28 29 aomclem3 φ¬domz=domzEWeR1domz
31 iffalse ¬domz=domzifdomz=domzFE=E
32 31 adantl φ¬domz=domzifdomz=domzFE=E
33 eqidd φ¬domz=domzR1domz=R1domz
34 32 33 weeq12d φ¬domz=domzifdomz=domzFEWeR1domzEWeR1domz
35 30 34 mpbird φ¬domz=domzifdomz=domzFEWeR1domz
36 20 35 pm2.61dan φifdomz=domzFEWeR1domz
37 weinxp ifdomz=domzFEWeR1domzifdomz=domzFER1domz×R1domzWeR1domz
38 36 37 sylib φifdomz=domzFER1domz×R1domzWeR1domz
39 weeq1 G=ifdomz=domzFER1domz×R1domzGWeR1domzifdomz=domzFER1domz×R1domzWeR1domz
40 6 39 ax-mp GWeR1domzifdomz=domzFER1domz×R1domzWeR1domz
41 38 40 sylibr φGWeR1domz