Description: An arrow is contained in the hom-set corresponding to its domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | arwrcl.a | |
|
arwhoma.h | |
||
Assertion | arwhoma | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | arwrcl.a | |
|
2 | arwhoma.h | |
|
3 | 1 2 | arwval | |
4 | 3 | eleq2i | |
5 | 4 | biimpi | |
6 | eqid | |
|
7 | 1 | arwrcl | |
8 | 2 6 7 | homaf | |
9 | ffn | |
|
10 | fnunirn | |
|
11 | 8 9 10 | 3syl | |
12 | 5 11 | mpbid | |
13 | fveq2 | |
|
14 | df-ov | |
|
15 | 13 14 | eqtr4di | |
16 | 15 | eleq2d | |
17 | 16 | rexxp | |
18 | 12 17 | sylib | |
19 | id | |
|
20 | 2 | homadm | |
21 | 2 | homacd | |
22 | 20 21 | oveq12d | |
23 | 19 22 | eleqtrrd | |
24 | 23 | rexlimivw | |
25 | 24 | rexlimivw | |
26 | 18 25 | syl | |