Metamath Proof Explorer


Theorem arwhoma

Description: An arrow is contained in the hom-set corresponding to its domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses arwrcl.a A=ArrowC
arwhoma.h H=HomaC
Assertion arwhoma FAFdomaFHcodaF

Proof

Step Hyp Ref Expression
1 arwrcl.a A=ArrowC
2 arwhoma.h H=HomaC
3 1 2 arwval A=ranH
4 3 eleq2i FAFranH
5 4 biimpi FAFranH
6 eqid BaseC=BaseC
7 1 arwrcl FACCat
8 2 6 7 homaf FAH:BaseC×BaseC𝒫BaseC×BaseC×V
9 ffn H:BaseC×BaseC𝒫BaseC×BaseC×VHFnBaseC×BaseC
10 fnunirn HFnBaseC×BaseCFranHzBaseC×BaseCFHz
11 8 9 10 3syl FAFranHzBaseC×BaseCFHz
12 5 11 mpbid FAzBaseC×BaseCFHz
13 fveq2 z=xyHz=Hxy
14 df-ov xHy=Hxy
15 13 14 eqtr4di z=xyHz=xHy
16 15 eleq2d z=xyFHzFxHy
17 16 rexxp zBaseC×BaseCFHzxBaseCyBaseCFxHy
18 12 17 sylib FAxBaseCyBaseCFxHy
19 id FxHyFxHy
20 2 homadm FxHydomaF=x
21 2 homacd FxHycodaF=y
22 20 21 oveq12d FxHydomaFHcodaF=xHy
23 19 22 eleqtrrd FxHyFdomaFHcodaF
24 23 rexlimivw yBaseCFxHyFdomaFHcodaF
25 24 rexlimivw xBaseCyBaseCFxHyFdomaFHcodaF
26 18 25 syl FAFdomaFHcodaF