Description: Two ways of saying a relation is antisymmetric and reflexive. (Contributed by NM, 6-May-2008) (Proof shortened by Mario Carneiro, 4-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | asymref2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | asymref | |
|
2 | albiim | |
|
3 | 2 | ralbii | |
4 | r19.26 | |
|
5 | ancom | |
|
6 | equcom | |
|
7 | 6 | imbi1i | |
8 | 7 | albii | |
9 | breq2 | |
|
10 | breq1 | |
|
11 | 9 10 | anbi12d | |
12 | anidm | |
|
13 | 11 12 | bitrdi | |
14 | 13 | equsalvw | |
15 | 8 14 | bitri | |
16 | 15 | ralbii | |
17 | df-ral | |
|
18 | df-br | |
|
19 | vex | |
|
20 | vex | |
|
21 | 19 20 | opeluu | |
22 | 21 | simpld | |
23 | 18 22 | sylbi | |
24 | 23 | adantr | |
25 | 24 | pm2.24d | |
26 | 25 | com12 | |
27 | 26 | alrimiv | |
28 | id | |
|
29 | 27 28 | ja | |
30 | ax-1 | |
|
31 | 29 30 | impbii | |
32 | 31 | albii | |
33 | 17 32 | bitri | |
34 | 16 33 | anbi12i | |
35 | 4 5 34 | 3bitri | |
36 | 1 3 35 | 3bitri | |