Metamath Proof Explorer


Theorem ausgrusgri

Description: The equivalence of the definitions of a simple graph, expressed with the set of vertices and the set of edges. (Contributed by AV, 15-Oct-2020)

Ref Expression
Hypotheses ausgr.1 G=ve|ex𝒫v|x=2
ausgrusgri.1 O=f|f:domf1-1ranf
Assertion ausgrusgri HWVtxHGEdgHiEdgHOHUSGraph

Proof

Step Hyp Ref Expression
1 ausgr.1 G=ve|ex𝒫v|x=2
2 ausgrusgri.1 O=f|f:domf1-1ranf
3 fvex VtxHV
4 fvex EdgHV
5 1 isausgr VtxHVEdgHVVtxHGEdgHEdgHx𝒫VtxH|x=2
6 3 4 5 mp2an VtxHGEdgHEdgHx𝒫VtxH|x=2
7 edgval EdgH=raniEdgH
8 7 a1i HWEdgH=raniEdgH
9 8 sseq1d HWEdgHx𝒫VtxH|x=2raniEdgHx𝒫VtxH|x=2
10 2 eleq2i iEdgHOiEdgHf|f:domf1-1ranf
11 fvex iEdgHV
12 id f=iEdgHf=iEdgH
13 dmeq f=iEdgHdomf=domiEdgH
14 rneq f=iEdgHranf=raniEdgH
15 12 13 14 f1eq123d f=iEdgHf:domf1-1ranfiEdgH:domiEdgH1-1raniEdgH
16 11 15 elab iEdgHf|f:domf1-1ranfiEdgH:domiEdgH1-1raniEdgH
17 10 16 sylbb iEdgHOiEdgH:domiEdgH1-1raniEdgH
18 17 3ad2ant3 HWraniEdgHx𝒫VtxH|x=2iEdgHOiEdgH:domiEdgH1-1raniEdgH
19 simp2 HWraniEdgHx𝒫VtxH|x=2iEdgHOraniEdgHx𝒫VtxH|x=2
20 f1ssr iEdgH:domiEdgH1-1raniEdgHraniEdgHx𝒫VtxH|x=2iEdgH:domiEdgH1-1x𝒫VtxH|x=2
21 18 19 20 syl2anc HWraniEdgHx𝒫VtxH|x=2iEdgHOiEdgH:domiEdgH1-1x𝒫VtxH|x=2
22 21 3exp HWraniEdgHx𝒫VtxH|x=2iEdgHOiEdgH:domiEdgH1-1x𝒫VtxH|x=2
23 9 22 sylbid HWEdgHx𝒫VtxH|x=2iEdgHOiEdgH:domiEdgH1-1x𝒫VtxH|x=2
24 6 23 biimtrid HWVtxHGEdgHiEdgHOiEdgH:domiEdgH1-1x𝒫VtxH|x=2
25 24 3imp HWVtxHGEdgHiEdgHOiEdgH:domiEdgH1-1x𝒫VtxH|x=2
26 eqid VtxH=VtxH
27 eqid iEdgH=iEdgH
28 26 27 isusgrs HWHUSGraphiEdgH:domiEdgH1-1x𝒫VtxH|x=2
29 28 3ad2ant1 HWVtxHGEdgHiEdgHOHUSGraphiEdgH:domiEdgH1-1x𝒫VtxH|x=2
30 25 29 mpbird HWVtxHGEdgHiEdgHOHUSGraph