Description: Lemma for axdc . Using the full Axiom of Choice, we can construct a choice function g on ~P dom x . From this, we can build a sequence F starting at any value s e. dom x by repeatedly applying g to the set ( Fx ) (where x is the value from the previous iteration). (Contributed by Mario Carneiro, 25-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | axdclem2.1 | |
|
Assertion | axdclem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axdclem2.1 | |
|
2 | frfnom | |
|
3 | 1 | fneq1i | |
4 | 2 3 | mpbir | |
5 | 4 | a1i | |
6 | omex | |
|
7 | 6 | a1i | |
8 | 5 7 | fnexd | |
9 | fveq2 | |
|
10 | suceq | |
|
11 | 10 | fveq2d | |
12 | 9 11 | breq12d | |
13 | fveq2 | |
|
14 | suceq | |
|
15 | 14 | fveq2d | |
16 | 13 15 | breq12d | |
17 | fveq2 | |
|
18 | suceq | |
|
19 | 18 | fveq2d | |
20 | 17 19 | breq12d | |
21 | 1 | fveq1i | |
22 | fr0g | |
|
23 | 22 | elv | |
24 | 21 23 | eqtri | |
25 | 24 | breq1i | |
26 | 25 | biimpri | |
27 | 26 | eximi | |
28 | peano1 | |
|
29 | 1 | axdclem | |
30 | 28 29 | mpi | |
31 | 27 30 | syl3an3 | |
32 | 31 | 3com23 | |
33 | fvex | |
|
34 | fvex | |
|
35 | 33 34 | brelrn | |
36 | ssel | |
|
37 | 35 36 | syl5 | |
38 | 34 | eldm | |
39 | 37 38 | imbitrdi | |
40 | 39 | ad2antll | |
41 | peano2 | |
|
42 | 1 | axdclem | |
43 | 41 42 | syl5 | |
44 | 43 | 3expia | |
45 | 44 | com3r | |
46 | 45 | imp | |
47 | 40 46 | syld | |
48 | 47 | 3adantr2 | |
49 | 48 | ex | |
50 | 12 16 20 32 49 | finds2 | |
51 | 50 | com12 | |
52 | 51 | ralrimiv | |
53 | fveq1 | |
|
54 | fveq1 | |
|
55 | 53 54 | breq12d | |
56 | 55 | ralbidv | |
57 | 8 52 56 | spcedv | |
58 | 57 | 3exp | |
59 | vex | |
|
60 | 59 | dmex | |
61 | 60 | pwex | |
62 | 61 | ac4c | |
63 | 58 62 | exlimiiv | |