| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axdclem2.1 |
|
| 2 |
|
frfnom |
|
| 3 |
1
|
fneq1i |
|
| 4 |
2 3
|
mpbir |
|
| 5 |
4
|
a1i |
|
| 6 |
|
omex |
|
| 7 |
6
|
a1i |
|
| 8 |
5 7
|
fnexd |
|
| 9 |
|
fveq2 |
|
| 10 |
|
suceq |
|
| 11 |
10
|
fveq2d |
|
| 12 |
9 11
|
breq12d |
|
| 13 |
|
fveq2 |
|
| 14 |
|
suceq |
|
| 15 |
14
|
fveq2d |
|
| 16 |
13 15
|
breq12d |
|
| 17 |
|
fveq2 |
|
| 18 |
|
suceq |
|
| 19 |
18
|
fveq2d |
|
| 20 |
17 19
|
breq12d |
|
| 21 |
1
|
fveq1i |
|
| 22 |
|
fr0g |
|
| 23 |
22
|
elv |
|
| 24 |
21 23
|
eqtri |
|
| 25 |
24
|
breq1i |
|
| 26 |
25
|
biimpri |
|
| 27 |
26
|
eximi |
|
| 28 |
|
peano1 |
|
| 29 |
1
|
axdclem |
|
| 30 |
28 29
|
mpi |
|
| 31 |
27 30
|
syl3an3 |
|
| 32 |
31
|
3com23 |
|
| 33 |
|
fvex |
|
| 34 |
|
fvex |
|
| 35 |
33 34
|
brelrn |
|
| 36 |
|
ssel |
|
| 37 |
35 36
|
syl5 |
|
| 38 |
34
|
eldm |
|
| 39 |
37 38
|
imbitrdi |
|
| 40 |
39
|
ad2antll |
|
| 41 |
|
peano2 |
|
| 42 |
1
|
axdclem |
|
| 43 |
41 42
|
syl5 |
|
| 44 |
43
|
3expia |
|
| 45 |
44
|
com3r |
|
| 46 |
45
|
imp |
|
| 47 |
40 46
|
syld |
|
| 48 |
47
|
3adantr2 |
|
| 49 |
48
|
ex |
|
| 50 |
12 16 20 32 49
|
finds2 |
|
| 51 |
50
|
com12 |
|
| 52 |
51
|
ralrimiv |
|
| 53 |
|
fveq1 |
|
| 54 |
|
fveq1 |
|
| 55 |
53 54
|
breq12d |
|
| 56 |
55
|
ralbidv |
|
| 57 |
8 52 56
|
spcedv |
|
| 58 |
57
|
3exp |
|
| 59 |
|
vex |
|
| 60 |
59
|
dmex |
|
| 61 |
60
|
pwex |
|
| 62 |
61
|
ac4c |
|
| 63 |
58 62
|
exlimiiv |
|