Description: The Tarski-Grothendieck axiom using abbreviations. This version is called Tarski's axiom: given a set x , there exists a set y containing x , the subsets of the members of y , the power sets of the members of y , and the subsets of y of cardinality less than that of y . (Contributed by NM, 21-Jun-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | axgroth6 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axgroth5 | |
|
2 | biid | |
|
3 | pweq | |
|
4 | 3 | sseq1d | |
5 | 4 | cbvralvw | |
6 | ssid | |
|
7 | sseq2 | |
|
8 | 7 | rspcev | |
9 | 6 8 | mpan2 | |
10 | pweq | |
|
11 | 10 | sseq1d | |
12 | 11 | rspccv | |
13 | pwss | |
|
14 | vpwex | |
|
15 | sseq1 | |
|
16 | eleq1 | |
|
17 | 15 16 | imbi12d | |
18 | 14 17 | spcv | |
19 | 13 18 | sylbi | |
20 | 12 19 | syl6 | |
21 | 20 | rexlimdv | |
22 | 9 21 | impbid2 | |
23 | 22 | ralbidv | |
24 | 5 23 | sylbi | |
25 | 24 | pm5.32i | |
26 | r19.26 | |
|
27 | r19.26 | |
|
28 | 25 26 27 | 3bitr4i | |
29 | velpw | |
|
30 | impexp | |
|
31 | ssdomg | |
|
32 | 31 | elv | |
33 | 32 | pm4.71i | |
34 | 33 | imbi1i | |
35 | brsdom | |
|
36 | 35 | imbi1i | |
37 | impexp | |
|
38 | 36 37 | bitri | |
39 | 38 | imbi2i | |
40 | 30 34 39 | 3bitr4ri | |
41 | 40 | pm5.74ri | |
42 | pm4.64 | |
|
43 | 41 42 | bitrdi | |
44 | 29 43 | sylbi | |
45 | 44 | ralbiia | |
46 | 2 28 45 | 3anbi123i | |
47 | 46 | exbii | |
48 | 1 47 | mpbir | |