Metamath Proof Explorer


Theorem ballotlemieq

Description: If two countings share the same first tie, they also have the same swap function. (Contributed by Thierry Arnoux, 18-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
ballotth.e E=cO|i1M+N0<Fci
ballotth.mgtn N<M
ballotth.i I=cOEsupk1M+N|Fck=0<
ballotth.s S=cOEi1M+NifiIcIc+1-ii
Assertion ballotlemieq COEDOEIC=IDSC=SD

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 ballotth.e E=cO|i1M+N0<Fci
7 ballotth.mgtn N<M
8 ballotth.i I=cOEsupk1M+N|Fck=0<
9 ballotth.s S=cOEi1M+NifiIcIc+1-ii
10 simpl IC=IDi1M+NIC=ID
11 10 breq2d IC=IDi1M+NiICiID
12 10 oveq1d IC=IDi1M+NIC+1=ID+1
13 12 oveq1d IC=IDi1M+NIC+1-i=ID+1-i
14 11 13 ifbieq1d IC=IDi1M+NifiICIC+1-ii=ifiIDID+1-ii
15 14 mpteq2dva IC=IDi1M+NifiICIC+1-ii=i1M+NifiIDID+1-ii
16 15 3ad2ant3 COEDOEIC=IDi1M+NifiICIC+1-ii=i1M+NifiIDID+1-ii
17 1 2 3 4 5 6 7 8 9 ballotlemsval COESC=i1M+NifiICIC+1-ii
18 17 3ad2ant1 COEDOEIC=IDSC=i1M+NifiICIC+1-ii
19 1 2 3 4 5 6 7 8 9 ballotlemsval DOESD=i1M+NifiIDID+1-ii
20 19 3ad2ant2 COEDOEIC=IDSD=i1M+NifiIDID+1-ii
21 16 18 20 3eqtr4d COEDOEIC=IDSC=SD