Metamath Proof Explorer


Theorem ballotlemii

Description: The first tie cannot be reached at the first pick. (Contributed by Thierry Arnoux, 4-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
ballotth.e E=cO|i1M+N0<Fci
ballotth.mgtn N<M
ballotth.i I=cOEsupk1M+N|Fck=0<
Assertion ballotlemii COE1CIC1

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 ballotth.e E=cO|i1M+N0<Fci
7 ballotth.mgtn N<M
8 ballotth.i I=cOEsupk1M+N|Fck=0<
9 1e0p1 1=0+1
10 ax-1ne0 10
11 9 10 eqnetrri 0+10
12 11 neii ¬0+1=0
13 eldifi COECO
14 1nn 1
15 14 a1i COE1
16 1 2 3 4 5 13 15 ballotlemfp1 COE¬1CFC1=FC1111CFC1=FC11+1
17 16 simprd COE1CFC1=FC11+1
18 17 imp COE1CFC1=FC11+1
19 1m1e0 11=0
20 19 fveq2i FC11=FC0
21 20 oveq1i FC11+1=FC0+1
22 21 a1i COE1CFC11+1=FC0+1
23 1 2 3 4 5 ballotlemfval0 COFC0=0
24 13 23 syl COEFC0=0
25 24 adantr COE1CFC0=0
26 25 oveq1d COE1CFC0+1=0+1
27 18 22 26 3eqtrrd COE1C0+1=FC1
28 27 eqeq1d COE1C0+1=0FC1=0
29 12 28 mtbii COE1C¬FC1=0
30 1 2 3 4 5 6 7 8 ballotlemiex COEIC1M+NFCIC=0
31 30 simprd COEFCIC=0
32 31 ad2antrr COE1CIC=1FCIC=0
33 fveqeq2 IC=1FCIC=0FC1=0
34 33 adantl COE1CIC=1FCIC=0FC1=0
35 32 34 mpbid COE1CIC=1FC1=0
36 29 35 mtand COE1C¬IC=1
37 36 neqned COE1CIC1