Metamath Proof Explorer


Theorem ballotlemsdom

Description: Domain of S for a given counting C . (Contributed by Thierry Arnoux, 12-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
ballotth.e E=cO|i1M+N0<Fci
ballotth.mgtn N<M
ballotth.i I=cOEsupk1M+N|Fck=0<
ballotth.s S=cOEi1M+NifiIcIc+1-ii
Assertion ballotlemsdom COEJ1M+NSCJ1M+N

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 ballotth.e E=cO|i1M+N0<Fci
7 ballotth.mgtn N<M
8 ballotth.i I=cOEsupk1M+N|Fck=0<
9 ballotth.s S=cOEi1M+NifiIcIc+1-ii
10 1 2 3 4 5 6 7 8 9 ballotlemsv COEJ1M+NSCJ=ifJICIC+1-JJ
11 1 2 3 4 5 6 7 8 ballotlemiex COEIC1M+NFCIC=0
12 11 simpld COEIC1M+N
13 12 elfzelzd COEIC
14 13 ad2antrr COEJ1M+NJICIC
15 nnaddcl MNM+N
16 1 2 15 mp2an M+N
17 16 nnzi M+N
18 17 a1i COEJ1M+NJICM+N
19 12 ad2antrr COEJ1M+NJICIC1M+N
20 elfzle2 IC1M+NICM+N
21 19 20 syl COEJ1M+NJICICM+N
22 eluz2 M+NICICM+NICM+N
23 fzss2 M+NIC1IC1M+N
24 22 23 sylbir ICM+NICM+N1IC1M+N
25 14 18 21 24 syl3anc COEJ1M+NJIC1IC1M+N
26 1zzd COEJ1M+NJIC1
27 simplr COEJ1M+NJICJ1M+N
28 27 elfzelzd COEJ1M+NJICJ
29 elfzle1 J1M+N1J
30 27 29 syl COEJ1M+NJIC1J
31 simpr COEJ1M+NJICJIC
32 26 14 28 30 31 elfzd COEJ1M+NJICJ1IC
33 fzrev3i J1IC1+IC-J1IC
34 32 33 syl COEJ1M+NJIC1+IC-J1IC
35 1cnd COE1
36 13 zcnd COEIC
37 35 36 addcomd COE1+IC=IC+1
38 37 oveq1d COE1+IC-J=IC+1-J
39 38 eleq1d COE1+IC-J1ICIC+1-J1IC
40 39 ad2antrr COEJ1M+NJIC1+IC-J1ICIC+1-J1IC
41 34 40 mpbid COEJ1M+NJICIC+1-J1IC
42 25 41 sseldd COEJ1M+NJICIC+1-J1M+N
43 simplr COEJ1M+N¬JICJ1M+N
44 42 43 ifclda COEJ1M+NifJICIC+1-JJ1M+N
45 10 44 eqeltrd COEJ1M+NSCJ1M+N