Metamath Proof Explorer


Theorem ballotlemsel1i

Description: The range ( 1 ... ( IC ) ) is invariant under ( SC ) . (Contributed by Thierry Arnoux, 28-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O = c 𝒫 1 M + N | c = M
ballotth.p P = x 𝒫 O x O
ballotth.f F = c O i 1 i c 1 i c
ballotth.e E = c O | i 1 M + N 0 < F c i
ballotth.mgtn N < M
ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
Assertion ballotlemsel1i C O E J 1 I C S C J 1 I C

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O = c 𝒫 1 M + N | c = M
4 ballotth.p P = x 𝒫 O x O
5 ballotth.f F = c O i 1 i c 1 i c
6 ballotth.e E = c O | i 1 M + N 0 < F c i
7 ballotth.mgtn N < M
8 ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
9 ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
10 1zzd C O E J 1 I C 1
11 1 2 3 4 5 6 7 8 ballotlemiex C O E I C 1 M + N F C I C = 0
12 11 simpld C O E I C 1 M + N
13 elfzelz I C 1 M + N I C
14 12 13 syl C O E I C
15 14 adantr C O E J 1 I C I C
16 nnaddcl M N M + N
17 1 2 16 mp2an M + N
18 17 nnzi M + N
19 18 a1i C O E M + N
20 elfzle2 I C 1 M + N I C M + N
21 12 20 syl C O E I C M + N
22 eluz2 M + N I C I C M + N I C M + N
23 14 19 21 22 syl3anbrc C O E M + N I C
24 fzss2 M + N I C 1 I C 1 M + N
25 23 24 syl C O E 1 I C 1 M + N
26 25 sselda C O E J 1 I C J 1 M + N
27 1 2 3 4 5 6 7 8 9 ballotlemsdom C O E J 1 M + N S C J 1 M + N
28 26 27 syldan C O E J 1 I C S C J 1 M + N
29 elfzelz S C J 1 M + N S C J
30 28 29 syl C O E J 1 I C S C J
31 elfzelz J 1 I C J
32 31 adantl C O E J 1 I C J
33 32 zred C O E J 1 I C J
34 15 zred C O E J 1 I C I C
35 1red C O E J 1 I C 1
36 34 35 readdcld C O E J 1 I C I C + 1
37 elfzle2 J 1 I C J I C
38 37 adantl C O E J 1 I C J I C
39 15 zcnd C O E J 1 I C I C
40 1cnd C O E J 1 I C 1
41 39 40 pncand C O E J 1 I C I C + 1 - 1 = I C
42 38 41 breqtrrd C O E J 1 I C J I C + 1 - 1
43 33 36 35 42 lesubd C O E J 1 I C 1 I C + 1 - J
44 1 2 3 4 5 6 7 8 9 ballotlemsv C O E J 1 M + N S C J = if J I C I C + 1 - J J
45 26 44 syldan C O E J 1 I C S C J = if J I C I C + 1 - J J
46 38 iftrued C O E J 1 I C if J I C I C + 1 - J J = I C + 1 - J
47 45 46 eqtrd C O E J 1 I C S C J = I C + 1 - J
48 43 47 breqtrrd C O E J 1 I C 1 S C J
49 14 adantr C O E J 1 M + N I C
50 elfznn J 1 M + N J
51 50 adantl C O E J 1 M + N J
52 49 51 ltesubnnd C O E J 1 M + N I C + 1 - J I C
53 26 52 syldan C O E J 1 I C I C + 1 - J I C
54 47 53 eqbrtrd C O E J 1 I C S C J I C
55 elfz4 1 I C S C J 1 S C J S C J I C S C J 1 I C
56 10 15 30 48 54 55 syl32anc C O E J 1 I C S C J 1 I C