Metamath Proof Explorer


Theorem bccl

Description: A binomial coefficient, in its extended domain, is a nonnegative integer. (Contributed by NM, 10-Jul-2005) (Revised by Mario Carneiro, 9-Nov-2013)

Ref Expression
Assertion bccl N0K(NK)0

Proof

Step Hyp Ref Expression
1 oveq1 m=0(mk)=(0k)
2 1 eleq1d m=0(mk)0(0k)0
3 2 ralbidv m=0k(mk)0k(0k)0
4 oveq1 m=n(mk)=(nk)
5 4 eleq1d m=n(mk)0(nk)0
6 5 ralbidv m=nk(mk)0k(nk)0
7 oveq1 m=n+1(mk)=(n+1k)
8 7 eleq1d m=n+1(mk)0(n+1k)0
9 8 ralbidv m=n+1k(mk)0k(n+1k)0
10 oveq1 m=N(mk)=(Nk)
11 10 eleq1d m=N(mk)0(Nk)0
12 11 ralbidv m=Nk(mk)0k(Nk)0
13 elfz1eq k00k=0
14 13 adantl kk00k=0
15 oveq2 k=0(0k)=(00)
16 0nn0 00
17 bcn0 00(00)=1
18 16 17 ax-mp (00)=1
19 1nn0 10
20 18 19 eqeltri (00)0
21 15 20 eqeltrdi k=0(0k)0
22 14 21 syl kk00(0k)0
23 bcval3 00k¬k00(0k)=0
24 16 23 mp3an1 k¬k00(0k)=0
25 24 16 eqeltrdi k¬k00(0k)0
26 22 25 pm2.61dan k(0k)0
27 26 rgen k(0k)0
28 oveq2 k=m(nk)=(nm)
29 28 eleq1d k=m(nk)0(nm)0
30 29 cbvralvw k(nk)0m(nm)0
31 bcpasc n0k(nk)+(nk1)=(n+1k)
32 31 adantlr n0m(nm)0k(nk)+(nk1)=(n+1k)
33 oveq2 m=k(nm)=(nk)
34 33 eleq1d m=k(nm)0(nk)0
35 34 rspccva m(nm)0k(nk)0
36 peano2zm kk1
37 oveq2 m=k1(nm)=(nk1)
38 37 eleq1d m=k1(nm)0(nk1)0
39 38 rspccva m(nm)0k1(nk1)0
40 36 39 sylan2 m(nm)0k(nk1)0
41 35 40 nn0addcld m(nm)0k(nk)+(nk1)0
42 41 adantll n0m(nm)0k(nk)+(nk1)0
43 32 42 eqeltrrd n0m(nm)0k(n+1k)0
44 43 ralrimiva n0m(nm)0k(n+1k)0
45 44 ex n0m(nm)0k(n+1k)0
46 30 45 biimtrid n0k(nk)0k(n+1k)0
47 3 6 9 12 27 46 nn0ind N0k(Nk)0
48 oveq2 k=K(Nk)=(NK)
49 48 eleq1d k=K(Nk)0(NK)0
50 49 rspccva k(Nk)0K(NK)0
51 47 50 sylan N0K(NK)0