Metamath Proof Explorer


Theorem bcth2

Description: Baire's Category Theorem, version 2: If countably many closed sets cover X , then one of them has an interior. (Contributed by Mario Carneiro, 10-Jan-2014)

Ref Expression
Hypothesis bcth.2 J=MetOpenD
Assertion bcth2 DCMetXXM:ClsdJranM=XkintJMk

Proof

Step Hyp Ref Expression
1 bcth.2 J=MetOpenD
2 simpll DCMetXXM:ClsdJranM=XDCMetX
3 simprl DCMetXXM:ClsdJranM=XM:ClsdJ
4 cmetmet DCMetXDMetX
5 4 ad2antrr DCMetXXM:ClsdJranM=XDMetX
6 metxmet DMetXD∞MetX
7 1 mopntopon D∞MetXJTopOnX
8 5 6 7 3syl DCMetXXM:ClsdJranM=XJTopOnX
9 topontop JTopOnXJTop
10 8 9 syl DCMetXXM:ClsdJranM=XJTop
11 simprr DCMetXXM:ClsdJranM=XranM=X
12 toponmax JTopOnXXJ
13 8 12 syl DCMetXXM:ClsdJranM=XXJ
14 11 13 eqeltrd DCMetXXM:ClsdJranM=XranMJ
15 isopn3i JTopranMJintJranM=ranM
16 10 14 15 syl2anc DCMetXXM:ClsdJranM=XintJranM=ranM
17 16 11 eqtrd DCMetXXM:ClsdJranM=XintJranM=X
18 simplr DCMetXXM:ClsdJranM=XX
19 17 18 eqnetrd DCMetXXM:ClsdJranM=XintJranM
20 1 bcth DCMetXM:ClsdJintJranMkintJMk
21 2 3 19 20 syl3anc DCMetXXM:ClsdJranM=XkintJMk